精英家教网 > 高中数学 > 题目详情

已知等差数列满足:,且成等比数列.
(1)求数列的通项公式.
(2)记为数列的前项和,是否存在正整数,使得若存在,求的最小值;若不存在,说明理由.

(1).

解析试题分析:(1)设数列的公差为,根据成等比数列求得的值,从而求得数列的通项公式;(2)由(1)中求得的,根据等差数列的求和公式求出,解不等式求出满足条件的的.
(1)设数列的公差为,依题意,成等比数列,
所以,解得
时,;当时,
所以数列的通项公式为.
(2)当时,,显然,不存在正整数,使得.
时,
,即
解得(舍去)
此时存在正整数,使得成立,的最小值为41.
综上所述,当时,不存在正整数
时,存在正整数,使得成立,的最小值为41.
考点:等差数列、等比数列的性质,等差数列的求和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的通项公式为,其中是常数,且.
(1)数列是否一定是等差数列?如果是,其首项与公差是什么?并证明,如果不是说明理由.
(2)设数列的前项和为,且,试确定的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的公差为,点在函数的图象上().
(1)若,点在函数的图象上,求数列的前项和
(2)若,学科网函数的图象在点处的切线在轴上的截距为,求数列的前 项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知首项都是1的两个数列),满足.
(1)令,求数列的通项公式;
(2)若,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an
(2)设Sn为{an}的前n项和,求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足,数列满足
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,设数列满足 
(1)求数列的前项和为
(2)若数列,若对一切正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求d,an
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

同步练习册答案