精英家教网 > 高中数学 > 题目详情

【题目】在试制某种洗涤剂新产品时,不同添加剂的种类以及添加的顺序对产品的性质都有影响,需要对各种不同的搭配方式做实验进行比较.现有芳香度分别为1,2,3,4,5,6的六种添加剂可供选用,根据试验设计原理,需要随机选取两种不同的添加剂先后添加进行实验.

(1)求两种添加剂芳香度之和等于5的概率;

(2)求两种添加剂芳香度之和大于5,且后添加的添加剂芳香度较大的概率.

【答案】(1);(2)

【解析】分析:(1)利用列举法,所有的选法共有而满足“两种添加剂芳香度之和等于5”的选法用列举法求得只有4由此求得两种不同的添加剂的芳香度之和等于5的概率;(2)用列举法求得“两种添加剂芳香度之和大于5,且后添加的添加剂芳香度较大”共有共11种,结合(1利用古典概型概率公式可得结果.

详解设试验中先添加的添加剂芳香度为后添加的为试验结果记为则基本事件包括:

,共30种结果.

(1)设“两种添加剂芳香度之和等于5”为事件

则事件包含的结果有共4种,故.

(2)设“两种添加剂芳香度之和大于5,且后添加的添加剂芳香度较大”为事件

则事件包含的结果有,共11种,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装 台发电机的水电站,过去 年的水文资料显示,水库年入流量 (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足 的年份有 年,不低于 且不超过 的年份有 年,超过 的年份有 年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来 年中,设 表示流量超过 的年数,求 的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量 限制,并有如下关系:

年入流量

发电机最多可运行台数

1

若某台发电机运行,则该台年利润为 万元,若某台发电机未运行,则该台年亏损 万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c﹣a=2acosB,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理过程是演绎推理的是( )
A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人
B.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°
C.由平面三角形的性质,推测空间四边形的性质
D.在数列{an}中,a1=1,an (an1 )(n≥2),由此归纳出{an}的通项公

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.

(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a,n,ξ的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,在培训期间他们参加的5次预寒成绩记录如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用茎叶图表示这两组数据;

(2)求甲、乙两人成绩的平均数与方差;

(3)若现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适,说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,曲线 的参数方程为 (其中 为参数),曲线 ,以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线 的普通方程和曲线 的极坐标方程;
(2)若射线 )与曲线 分别交于 两点,求 .

查看答案和解析>>

同步练习册答案