精英家教网 > 高中数学 > 题目详情
已知直线l:
x=-1+tcosα
y=tsinα
(t为参数,α为l的倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C为:ρ2-6ρcosθ+5=0.
(1)若直线l与曲线C相切,求α的值;
(2)设曲线C上任意一点的直角坐标为(x,y),求x+y的取值范围.
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:(1)求出圆的直角坐标方程,直线的直角坐标方程,利用直线l与曲线C相切,列出关系式,即可求α的值;
(2)曲线C上任意一点的直角坐标为(x,y),通过圆的参数方程,得到x+y的表达式,利用三角函数化简,即可求解取值范围.
解答: 解:(1)曲线C的直角坐标方程为x2+y2-6x+5=0
即(x-3)2+y2=4曲线C为圆心为(3,0),半径为2的圆.
直线l的方程为:xsinα-ycosα+sinα=0…(3分)
∵直线l与曲线C相切∴
|3sinα+sinα|
sin2α+cos2α
=2

sinα=
1
2
…(5分)
∵α∈[0,π)∴α=
π
6
6
…(6分)
(2)设x=3+2cosθ,y=2sinθ
则 x+y=3+2cosθ+2sinθ=3+2
2
sin(θ+
π
4
)
…(9分)
∴x+y的取值范围是[3-2
2
,3+2
2
]
.…(10分)
点评:本题考查直线与圆的参数方程以及极坐标方程的应用,直线与圆的位置关系,三角函数的化简求值,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等腰三角形ABC中,已知
sinA
sinB
=
2
3
,底边BC=8,则△ABC的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为a、b、c,若
1
a
1
b
1
c
成等差数列.求证:B不可能是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=30°,∠A=90°,OB=12,点P在OA上,且OP=2
3
.若过P点作直线截△AOB的两边,使截得的三角形与△AOB相似,则满足以上条件的直线的表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下说法中错误的个数是(  )个
①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“B=60°”是“A,B,C三个角成等差数列”的充要条件.
③“a<b”是“am2<bm2”的充分不必要条件.
A、1B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个数成等比数列,它们的积为27,他们的平方和为91,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax2-bx-lnx,其中a,b∈R.
(1)当a=3,b=-1时,求函数f(x)的最小值;
(2)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有
h(x1)-h(x2)
x1-x2
>-1成立,试用a表示出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,其面积为S,且b2+c2-a2=
4
3
3
S.
(1)求A;
(2)若a=5
3
,cosB=
4
5
,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列.

查看答案和解析>>

同步练习册答案