精英家教网 > 高中数学 > 题目详情
如图,曲线C1
x2
a2
+
y2
b2
=1(b>a>0,y≥0)与抛物线C2:x2=2py(p>0)的交点分别为A,B,曲线C1与抛物线C2在点A处的切线分别为l1和l2,且斜率分别为k1和k2
(I)k1•k2是否与p无关?若是,给出证明;若否,给以说明;
(Ⅱ)若l2与y轴的交点为D(0,-2),当a2+b2取得最小值9时,求曲线C1与抛物线C2的方程.
精英家教网

精英家教网
(I)设A(x0y0),由
x2
a2
+
y2
b2
=1(b>a>0,y≥0)

y=
b
a
a2-x2
,y′=-
bx
a
a2-x2

k1=y′|x=x0=-
bx0
a
a2-
x20
…(2分)
x2=2py(p>0)得y=
x2
2p
,则k2=y′|x=x0=
x0
p

所以k1k2=-
bx0
a
a2-
x20
x0
p
=-
b
x20
pa
a2-
x20
,(※)   …(4分)
又因为
x20
=2py0y0=
b
a
a2-
x20

x20
2p
=
b
a2-
x20
a
,即
x20
a2-
x20
=
2pb
a

代入(※)式得k1k2=-
b
x20
pa
a2-
x20
=-
b
pa
2pb
a
=-2(
b
a
)2

可见,k1•k2仅与a,b有关,与p无关.   …(6分)
(II)如图,设A(x0
x20
2p
),则x0∈(-a,0)

由(I)知k2=
x0
p
,则l2:y=
x0
p
(x-x0)+
x20
2p
.…(7分)
l2过点D(0,-2),则
x20
=4p,即x0=-2
p

所以A(-2
p
,2)
…(8分)
将点A的坐标代入曲线C1的方程得
4p
a2
+
4
b2
=1

a2+b2=(a2+b2)(
4p
a2
+
4
b2
)=4p+4+
4a2
b2
+
4pb2
a2
≥4p+4+8
p
,…(10分)
当且仅当“=”成立时,有
4p
a2
+
4
b2
=1
4a2
b2
=
4pb2
a2
4p+4+8
p
=9.
…(11分)
解得
p=
1
4
a2=3
b2=6.
所以C1
x2
3
+
y2
6
=1(y≥0),C2x2=
y
2
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杨浦区二模)如图,椭圆C1
x2
4
+y2=1,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求实数b的值;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA、MB分别与C1相交与D、E.
①证明:MD•ME=0;
②记△MAB,△MDE的面积分别是S1,S2.若
S1
S2
=λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)如图,曲线C1
x2
a2
+
y2
b2
=1(b>a>0,y≥0)与抛物线C2:x2=2py(p>0)的交点分别为A,B,曲线C1与抛物线C2在点A处的切线分别为l1和l2,且斜率分别为k1和k2
(I)k1•k2是否与p无关?若是,给出证明;若否,给以说明;
(Ⅱ)若l2与y轴的交点为D(0,-2),当a2+b2取得最小值9时,求曲线C1与抛物线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)函数y=2x和y=x3的图象的示意图如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2
(1)设曲线C1,C2分别对应函数y=f(x)和y=g(x),请指出图中曲线C1,C2对应的函数解析式.若不等式kf[g(x)]-g(x)<0对任意x∈(0,1)恒成立,求k的取值范围;
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2009年山东省枣庄市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,曲线C1=1(b>a>0,y≥0)与抛物线C2:x2=2py(p>0)的交点分别为A,B,曲线C1与抛物线C2在点A处的切线分别为l1和l2,且斜率分别为k1和k2
(I)k1•k2是否与p无关?若是,给出证明;若否,给以说明;
(Ⅱ)若l2与y轴的交点为D(0,-2),当a2+b2取得最小值9时,求曲线C1与抛物线C2的方程.

查看答案和解析>>

同步练习册答案