精英家教网 > 高中数学 > 题目详情

设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程。

 

【答案】

-=1

【解析】

试题分析:解:因为椭圆+=1的焦点为F1(0,-3),F2(0,3),故可设双曲线方程为

 (a>0,b>0),且c=3,a2+b2=9.由题设可知双曲线与椭圆的一个交点的纵坐标为4,将y=4代入椭圆方程得双曲线与椭圆的交点为(,4),(-,4),因为点(,4)[或(-,4)]在双曲线上,所以有a2+b2=9,可知a2=4, b2=5故可知-=1

考点:圆锥曲线的共同特征

点评:本题考查圆锥曲线的共同特征,解题的关键是两者共同的特征设出双曲线的标准方程,解题时要善于抓住问题的关键点.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线与椭圆=1有共同的焦点,且与此椭圆一个交点的纵坐标为4,求这个双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线与椭圆=1有共同的焦点,且与此椭圆一个交点的纵坐标为4,求这个双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线与椭圆=1有共同的焦点,且与此椭圆一个交点的纵坐标为4,求这个双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省西安市远东一中高二(上)12月月考数学试卷(理科)(解析版) 题型:解答题

(1)设椭圆+=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,求椭圆的标准方程.
(2)设双曲线与椭圆+=1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程.

查看答案和解析>>

同步练习册答案