精英家教网 > 高中数学 > 题目详情
18.作出函数y=-sinx,x∈[-π,π]的简图,并回答下列问题:
(1)观察函数图象,写出满足下列条件的x的区间.
①-sinx>0;②-sinx<0.
(2)直线y=$\frac{1}{2}$与y=-sinx的图象有几个交点?

分析 作出函数y=-sinx,x∈[-π,π]的简图,数形结合,可得结论.

解答 解:(1)作出函数y=-sinx,x∈[-π,π]的简图,如图所示:
观察函数图象,可得①当-π<x<0时,-sinx>0;
②当0<x<π 时,-sinx<0.
(2)数形结合可得,直线y=$\frac{1}{2}$与y=-sinx的图象有2个交点.

点评 本题主要考查正弦函数的图象特征,体现了数形结合的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若1+i=z(1-i),则z的虚部为(  )
A.-1B.-iC.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\left\{\begin{array}{l}x+2{\;}^{\;}(x<0)\\{x^2}{\;}^{\;}{\;}^{\;}(0≤x<2)\\ \frac{1}{2}x{\;}^{\;}{\;}^{\;}(x≥2)\end{array}\right.$
(1)求f(f(f(-$\frac{1}{2}$)))的值;
(2)若f(a)=2,求a的值.
(3)画出此函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$asinωx-acosωx(a>0,ω>0)的图象上的一个最高点和相邻的一个最低点坐标分别为$(\frac{π}{6},2),(\frac{2π}{3},-2)$.
(1)求a、ω的值;
(2)在△ABC中,a、b、c分别是角A、B、C的对边$(a<b),且f(A-\frac{π}{6})=1,求\frac{b-2c}{{asin(\frac{π}{6}-C)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足x>y,则下列关系式恒成立的是(  )
A.x3>y3B.x2>y2C.ln(x2+1)>ln(y2+1)D.$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点O(0,0)到直线x+2y-5=0的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,质点在坐标平面内做直线运动,分别求下列位移向量的坐标.
(1)向量$\overrightarrow{a}$表示沿东北方向移动了2个单位长度;
(2)向量$\overrightarrow{b}$表示沿西偏北60°方向移动了4个单位长度;
(3)向量$\overrightarrow{c}$表示沿东偏南30°方向移动了6个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求方程${x}^{\frac{2}{3}}$=|x|的实根的个数,并指出有哪些实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{{x}^{2}}{9}$-y2=1的两焦点是F1,F2,A为双曲线的一点,且|AF1|=7,则|AF2|的值是(  )
A.5+$\sqrt{10}$B.5$±\sqrt{10}$C.13D.13或1

查看答案和解析>>

同步练习册答案