【题目】已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,设面面MPQ=,则下列结论中不成立的是( )
A.面ABCD
B.AC
C.面MEF与面MPQ不垂直
D.当x变化时,不是定直线
科目:高中数学 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,且,.
(1)求数列的通项公式;
(2)数列满足,.
①求数列的通项公式;
②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=,设bn=,n∈N*。
(1)证明{bn}是等比数列(指出首项和公比);
(2)求数列{log2bn}的前n项和Tn。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学高一学生的数学与地理的水平测试成绩抽样统计如下表:若抽取的学生数为,成绩分为(优秀)、(良好)、(及格)三个等级,设, 分别表示数学成绩与地理成绩.例如:表中地理成绩为等级的共有人,数学成绩为级且地理成绩为等级的有8人.已知与均为等级的频率是0.07.
(1)设在该样本中,数学成绩优秀率是,求, 的值;
(2)已知, ,求数学成绩为等级的人数比数学成绩为等级的人数多的概率.
人数 | |||
14 | 40 | 10 | |
36 | |||
28 | 8 | 34 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为数列的前项和,对任意的,都有(为正常数).
(1)求证:数列是等比数列;
(2)数列满足,,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列问题中符合调查问卷要求的是( )
A.你们单位有几个高个子?
B.您对我们厂生产的电视机满意吗?
C.您的体重是多少千克?
D.很多顾客都认为该产品的质量很好,您不这么认为吗?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
分组 | 频数 | 频率 |
5 | ||
35 | ||
25 | ||
15 | ||
合计 | 100 |
(Ⅰ)求的值及随机抽取一考生恰为优秀生的概率;
(Ⅱ)按成绩采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com