精英家教网 > 高中数学 > 题目详情

已知函数数学公式,其中a是大于零的常数.
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)的最小值;
(3)若?x∈[0,+∞)恒有f(x)>0,试确定实数a的取值范围.

解:(1)
因为a>0,故当a>1时,定义域为(-1,+∞);
当a=1时,定义域为(-1,0)∪(0,+∞);
当0<a<1时,定义域为
(2)令
当a∈(1,4)时,由(1)得x∈(-1,+∞),故x+1>0,
所以
当且仅当时等号成立.
故f(x)的最小值为
(3)?x∈[0,+∞),恒有f(x)>0,
,又x∈[0,+∞),
则a>(2-x)(x+1),a>-x2+x+2恒成立,故a>2.
分析:(1)、函数f(x)的定义域要求),解这个分式不等式时,因为含有参数a,所以要分类讨论.
(2)、令,当a∈(1,4)时,由函数f(x)的定义域可知x+1>0,从而利用均值不等式求出函数f(x)的最小值.
(3)、由题设条件可知,,能推导出a>(2-x)(x+1)恒成立,从而推导出实数a的取值范围.
点评:本题是对数函数的综合题,难度较大,在解第(1)题时要注意对参数a进行妥类讨论,解第(2)题时要注意均值不等式的合理运用,解第(3)题时要进行合理转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数(其中A、B、是实数,且)的最小正周期是2,且当时,取得最大值2;

  (1)、求函数的表达式;

  (2)、在闭区间上是否存在的对称轴?如果存在,求出其对称轴的方程,

        若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省七校高三上学期第一次联考理科数学试卷(解析版) 题型:解答题

已知函数,其中a>0.

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线是曲线的切线,求实数a的值;

(Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市晋江市季延中学高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区北师特学校高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:2013年中国人民大学附中高考数学冲刺试卷06(理科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)

查看答案和解析>>

同步练习册答案