【题目】设函数(其中a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由.
(2)若,试判断函数f(x)在区间[1,+∞)上的单调性,并用函数单调性定义给出证明.
【答案】(1)见解析;(2)见解析
【解析】
(1)根据题意,求出函数的定义域,分a=0与a≠0两种情况讨论函数的奇偶性,即可得答案;
(2)根据题意,设1≤x1<x2,由作差法分析可得结论.
(1)函数,其定义域为{x|x≠0},
当a=0时,f(x)=,有f(-x)=-f(x),则函数f(x)为奇函数;
当a≠0时,,f(-x)=ax2-,
有f(x)≠f(-x)且f(-x)≠-f(x),
则函数f(x)是非奇非偶函数;
(2)根据题意,函数f(x)在[1,+∞)上为增函数;
证明:设1≤x1<x2,
则f(x1)-f(x2)=(ax12+)-(ax22+)=(x1-x2)[a(x1+x2)],
又由1≤x1<x2,则(x1-x2)<0,[a(x1+x2)>1,<1,则有f(x1)-f(x2)<0,
则函数f(x)在[1,+∞)上为增函数.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 某厂一批产品的次品率为 ,则任意抽取其中10件产品一定会发现一件次品
B. 掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5
C. 某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈
D. 气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).
报考“经济类” | 不报“经济类” | 合计 | |
男 | 6 | 24 | 30 |
女 | 14 | 6 | 20 |
合计 | 20 | 30 | 50 |
(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:
P(X2≥k) | 0.05 | 0.010 |
k | 3.841 | 6.635 |
(参考公式:X2= )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为准备参加市运动会,对本校高一、高二两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下定义为“不合格”.
(1)如果从所有运动员中用分层抽样抽取“合格”与“不合格”的人数共10人,问就抽取“合格”人数是多少?
(2)若从所有“合格”运动员中选取2名,用X表示所选运动员来自高一队的人数,试写出X的分布图,并求X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(I)求函数在点(1,0)处的切线方程;
(II)设实数k使得f(x)< kx恒成立,求k的范围;
(III)设函数,求函数h(x)在区间上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x﹣)x,则下列结论中正确的是( )
A.若﹣3≤m<n,则f(m)<f(n)
B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2
D.若f(m)<f(n),则m3<n3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的长轴长为6,且椭圆与圆: 的公共弦长为.
(1)求椭圆的方程.
(2)过点作斜率为的直线与椭圆交于两点, ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:
阅读过莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)试估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com