精英家教网 > 高中数学 > 题目详情

【题目】设函数(其中aR).

1)讨论函数fx)的奇偶性,并说明理由.

2)若,试判断函数fx)在区间[1,+∞)上的单调性,并用函数单调性定义给出证明.

【答案】1)见解析;(2)见解析

【解析】

1)根据题意,求出函数的定义域,分a=0a≠0两种情况讨论函数的奇偶性,即可得答案;

2)根据题意,设1≤x1x2,由作差法分析可得结论.

1)函数,其定义域为{x|x≠0},

a=0时,fx=,有f-x=-fx),则函数fx)为奇函数;

a≠0时,f-x=ax2-

fx)≠f-x)且f-x)≠-fx),

则函数fx)是非奇非偶函数;

2)根据题意,函数fx)在[1,+∞)上为增函数;

证明:设1≤x1x2

fx1-fx2=ax12+-ax22+=x1-x2[ax1+x2]

又由1≤x1x2,则(x1-x2)<0[ax1+x2)>11,则有fx1-fx2)<0

则函数fx)在[1,+∞)上为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 某厂一批产品的次品率为 ,则任意抽取其中10件产品一定会发现一件次品

B. 掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5

C. 某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈

D. 气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).

报考“经济类”

不报“经济类”

合计

6

24

30

14

6

20

合计

20

30

50

(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:

P(X2≥k)

0.05

0.010

k

3.841

6.635

(参考公式:X2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为准备参加市运动会,对本校高一、高二两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下定义为“不合格”.

(1)如果从所有运动员中用分层抽样抽取“合格”与“不合格”的人数共10人,问就抽取“合格”人数是多少?
(2)若从所有“合格”运动员中选取2名,用X表示所选运动员来自高一队的人数,试写出X的分布图,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数在点(1,0)处的切线方程;

(II)设实数k使得f(x)< kx恒成立,求k的范围;

(III)设函数,求函数h(x)在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x)x,则下列结论中正确的是(  )
A.若﹣3≤m<n,则f(m)<f(n)
B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2
D.若f(m)<f(n),则m3<n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:

阅读过莫言的
作品数(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10

(Ⅰ)试估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?

非常了解

一般了解

合计

男生

女生

合计

附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案