精英家教网 > 高中数学 > 题目详情
4.已知不等式组$\left\{\begin{array}{l}{x+y-3≥0,}&{\;}\\{x-2y+3≥0,}&{\;}\\{x≤a}&{\;}\end{array}\right.$,(a>1)表示的平面区域为D,点(x0,y0)在平面区域D上,则3x0-y0的最小值等于(  )
A.4a-3B.-1C.1D.$\frac{5a-3}{2}$

分析 作出不等式组对应的平面区域,要使平面区域内存在点P(x0,y0)满足3x0-y0的最优解,求解最小值.

解答 解:作出不等式组$\left\{\begin{array}{l}{x+y-3≥0,}&{\;}\\{x-2y+3≥0,}&{\;}\\{x≤a}&{\;}\end{array}\right.$(a>1)对应的平面如图:由$\left\{\begin{array}{l}{x+y-3=0}\\{x-2y+3=0}\end{array}\right.$
解得交点A的坐标为(1,2),点(x0,y0)在平面区域D上,则3x0-y0的最小值就是直线3x-y=z经过点A(1,2)取得,
故3x0-y0的最小值为3-2=1.
故选:C.

点评 本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在区间[0,1]上随机地取两个数x、y,则事件“y≤x5”发生的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,△ABC为等腰直角三角形,∠B=90°,将△ABC沿中位线DE翻折,得到如图2所示的空间图形(∠ADB为锐角).

(1)求证:BC⊥平面ABD;
(2)若BC=2,当三棱锥A-BCE的体积为$\frac{\sqrt{3}}{6}$时,求∠ABD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2}则A∩B=(  )
A.{x|1≤x≤3}B.{x|0≤x≤3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知命题p:?n∈N,n2<2n,则¬p为?n0∈N,n02≥${2}^{{n}_{0}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,g(x)=ex+ax.
(1)若a<0.
(i)试探讨函数f(x)的单调性;
(ii)若函数f(x)和g(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2-f(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若曲线y=lnx的一条切线为y=e(x-a)+b,其中a,b为正实数,则实数a的取值范围是($\frac{2}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,P为正方体ABCD-A1B1C1D1中AC1与BD1的交点,则△PAC在该正方体各个面上的射影可能是(  )
A.①②③④B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的中心在原点,焦点在x轴上,且短轴长为2,离心率等于$\frac{{2\sqrt{5}}}{5}$.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若$\overrightarrow{MA}={λ_1}\overrightarrow{AF},\overrightarrow{MB}={λ_2}\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

同步练习册答案