精英家教网 > 高中数学 > 题目详情
16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.2B.$\sqrt{6}$C.2$\sqrt{3}$D.$\sqrt{10}$

分析 利用两个向量数量积的定义与模长公式,进行计算即可.

解答 解:平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=2×1×cos120°=-1.
∴${(\overrightarrow{a}+2\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$+4$\overrightarrow{a}$•$\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$
=22+4×(-1)+4×12
=4,
∴|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2.
故选:A.

点评 本题主要考查两个向量数量积的定义与求向量的模应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABC1D1所成的角的正弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=xex在极值点处的切线方程是y=-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在正三棱锥P-ABC中,点P,A,B,C都在球O的球面上,PA,PB,PC两两互相垂直,且球心O到底面ABC的距离为$\frac{\sqrt{3}}{3}$,则球O的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)的定义域为D,如果对于任意x1∈D,存在唯一的x2∈D,使$\frac{f({x}_{1})+f({x}_{2})}{2}$=C(C为常数)成立,则称函数y=f(x)在D上的均值为C,给出下列四个函数:
①y=x3
②y=4sinx
③y=lnx
④y=2x
则在其定义域上均值为2的所有函数是(  )
A.①②B.③④C.①③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直角坐标系xOy中,已知点A(1,0),函数f(x)=sin(2x-$\frac{π}{6}$)的图象在y轴右侧的第一个最高点为B,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.无穷数列1,3,6,10…的通项公式为(  )
A.an=$\frac{{{n^2}+n}}{2}$B.an=$\frac{{{n^2}-n}}{2}$C.an=n2-n+1D.an=n2+n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD为菱形,G为PC中点,E,F分别为AB,PB上一点,AB=4AE=4$\sqrt{2}$,PB=4PF.
(1)求证:AC⊥DF;
(2)求证:EF∥平面BDG;
(3)求三棱锥B-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)的定义域为[0,2],则函数f(x-3)的定义域为(  )
A.[-3,-1]B.[0,2]C.[2,5]D.[3,5]

查看答案和解析>>

同步练习册答案