| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
分析 如图所示,建立空间直角坐标系.不妨时AB=1,取平面ABC1D1的法向量$\overrightarrow{n}$=$\overrightarrow{D{A}_{1}}$=(1,0,1),则直线AB1与平面ABC1D1所成的角的正弦值=|cos<$\overrightarrow{A{B}_{1}}$,$\overrightarrow{n}$>|=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{n}|}{|\overrightarrow{A{B}_{1}}||\overrightarrow{n}|}$,即可得出.
解答 解:如图所示,建立空间直角坐标系.![]()
不妨时AB=1,则D(0,0,0),A(1,0,0),B1(1,1,1),
A1(1,0,1).
则$\overrightarrow{A{B}_{1}}$=(0,1,1),
取平面ABC1D1的法向量$\overrightarrow{n}$=$\overrightarrow{D{A}_{1}}$=(1,0,1),
则直线AB1与平面ABC1D1所成的角的正弦值
=|cos<$\overrightarrow{A{B}_{1}}$,$\overrightarrow{n}$>|=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{n}|}{|\overrightarrow{A{B}_{1}}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}$=$\frac{1}{2}$.
故选:D.
点评 本题考查了空间位置关系、法向量的应用、线面角、向量夹角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$ | B. | $4\sqrt{3}+8sin(B+\frac{π}{3})$ | C. | $4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$ | D. | $4\sqrt{3}+8cos(B+\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{9}$ | B. | $-\frac{8}{9}$ | C. | $-\frac{1}{3}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{6}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com