精英家教网 > 高中数学 > 题目详情

【题目】设a,b是不同的直线,α,β是不同的平面,则下列四个命题中正确的是________.(填序号)

① 若a⊥b,a⊥α,则b∥α;② 若a∥α,α⊥β,则a⊥β;

③ 若a⊥β,α⊥β,则a∥α;④ 若a⊥b,a⊥α,b⊥β,则α⊥β.

【答案】

【解析】对于①,根据不一定得出由此可得不正确;对于②,aα,αβ则可能 ,因此②不正确;;对于③, 不一定得出由此可得不正确;对于④, ,可得直线 所成角或其补角等于平面 所成角又因为可得直线所成角对于由此可得所以是真命题综上所述,可得正确命题的序号为④,故答案为④.

【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,轴为正半轴建立极坐标系,圆的极坐标方程为,直线的参数方程为(t为参数).

(1)求圆的直角坐标方程;

(2)求直线分圆所得的两弧程度之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是两条公路(近似看成两条直线),,在内有一纪念塔(大小忽略不计),已知到直线的距离分别为=6千米,=12千米.现经过纪念塔修建一条直线型小路,与两条公路分别交于点

(1)求纪念塔到两条公路交点处的距离;

(2)若纪念塔为小路的中点,求小路的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

(1)证明:直线过定点;

(2)若直线不经过第四象限,求的取值范围;

(3)若直线轴负半轴于,交轴正半轴于,△的面积为为坐标原点),求的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,解不等式

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中点为D,B1C∩BC1=E. 求证:

(1)DE∥平面AA1C1C;

(2)AC⊥平面BCC1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:

求图值,并根据频率分布直方图估计这500名志愿者中年龄在的人数;

抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人这3名志愿者中“年龄低于35岁”的人数为分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面、边长为的菱形,又,且,点分别是棱的中点.

(1证明:平面

(2)证明:平面平面

(3)求点到平面的距离.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知国家某5A级大型景区对拥挤等级与每日游客数量单位:百人的关系有如下规定:当时,拥挤等级为;当时,拥挤等级为;当时,拥挤等级为拥挤;当时,拥挤等级为严重拥挤。该景区对6月份的游客数量作出如图的统计数据:

下面是根据统计数据得到的频率分布表,求出的值,并估计该景区6月份游客人数的平均值同一组中的数据用该组区间的中点值作代表

游客数量

单位:百人

天数

频率

某人选择在6月1日6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为的概率

查看答案和解析>>

同步练习册答案