精英家教网 > 高中数学 > 题目详情
20.已知m>2n,则m+$\frac{4{n}^{2}-2mn+9}{m-2n}$的最小值为(  )
A.2B.4C.6D.8

分析 由m>2n,得到m-2n>0,由m+$\frac{4{n}^{2}-2mn+9}{m-2n}$=m-2n+$\frac{9}{m-2n}$,利用基本不等式即可求出.

解答 解:∵m>2n,
∴m-2m>0,
∴m+$\frac{4{n}^{2}-2mn+9}{m-2n}$=m-2n+($\frac{4{n}^{2}-2mn+9}{m-2n}$+2n)=m-2n+$\frac{9}{m-2n}$≥2$\sqrt{(m-2n)•\frac{9}{m-2n}}$=6,
当且仅当m-2n=3时取等号,
∴则m+$\frac{4{n}^{2}-2mn+9}{m-2n}$的最小值为6
故选:C

点评 本题考查基本不等式的运用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lg(-x+4)的定义域为(  )
A.(-∞,4]B.(-∞,4)C.(0,4)D.(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U=R,集合A={x|0<2x+4<10},B={x|x<-4,或x>2},C={x|(x-a)(x-3a)<0,a<0}
(1)求A∪B
(2)若∁U(A∪B)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=acosθ\\ y=bsinθ\end{array}$(a>b>0,θ为参数),且曲线C1上的点$M(1,\frac{{\sqrt{3}}}{2})$对应的参数θ=$\frac{π}{3}$,以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)写出曲线C1的极坐标方程与曲线C2的直角坐标方程;
(Ⅱ)已知点M1、M2的极坐标分别为$(1,\frac{π}{2})$和(2,0),直线M1M2与曲线C2交于P、Q两点,射线OP与曲线C1交于点A,射线OQ与曲线C1交于点B,求$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线:y=x2的焦点坐标是(  )
A.$({0\;\;,\;\;\frac{1}{2}})$B.$({0\;\;,\;\;\frac{1}{4}})$C.$({\frac{1}{2}\;\;,\;\;0})$D.$({\frac{1}{4}\;\;,\;\;0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直三棱柱ABC-A1B1C1的底面为正三角形,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=30°且AB=4,设三棱锥F-AEC的体积为V1,三棱锥F-AEC与三棱锥A1-ACD的公共部分的体积为V2,求V1-V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知n=9$\int_{-1}^1{x^2}$dx,在二项式${(x-\frac{2}{x})^n}$的展开式中,x2的系数是60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a∈R,函数f(x)=ax3-3x2,x=2是函数y=f(x)的极值点.
(1)求a的值;
(2)求函数f(x)在区间[-1,5]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD中,AD∥BC,∠DAC=45°,∠ADC=60°,DC=$\sqrt{6}$,AB=3$\sqrt{2}$.
(1)求AC的长;
(2)求∠ABC的大小.

查看答案和解析>>

同步练习册答案