精英家教网 > 高中数学 > 题目详情
11.在△ABC中,$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,-sin$\frac{C}{2}$),且$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$.
(1)求C;
(2)已知c=$\frac{7}{2}$,ab=6,求a+b.

分析 (1)由向量的数量积的定义和坐标表示,计算即可得到角C;
(2)运用余弦定理,化简计算即可得到a+b.

解答 解:(1)$\overrightarrow{m}$•$\overrightarrow{n}$=cos2$\frac{C}{2}$-sin2$\frac{C}{2}$=1×1×cos$\frac{π}{3}$,
即cosC=$\frac{1}{2}$,由0<C<π,
可得C=$\frac{π}{3}$;
(2)由余弦定理可得cos$\frac{π}{3}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
由c=$\frac{7}{2}$,ab=6,则a2+b2=$\frac{73}{4}$,
则(a+b)2=a2+b2+2ab=$\frac{73}{4}$+12=$\frac{121}{4}$,
即有a+b=$\frac{11}{2}$.

点评 本题考查向量的数量积的定义和坐标表示,考查余弦定理的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求下列函数的值域:
(1)y=$\frac{x}{{x}^{2}-1}$;
(2)y=$\frac{{x}^{2}-1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.演绎推理“因为对数函数y=logax是增函数(大前提),而y=log${\;}_{\frac{1}{3}}$x是对数函数(小前提),所以y=log${\;}_{\frac{1}{3}}$x是增函数(结论)”所得结论错误的原因是(  )
A.大前提错B.小前提错
C.推理形式错D.大前提和小前提都错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若$∠B=\frac{π}{4}$,b=$\sqrt{2}a$,则∠C=(  )
A.$\frac{5}{12}π$或$\frac{7}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}π$D.$\frac{7}{12}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC中,AB=2,AC=1,当2x+y=t(t>0)时,|x$\overrightarrow{AB}$+y$\overrightarrow{AC}$|≥$\frac{\sqrt{2}}{2}$t恒成立,则△ABC的面积为1,在前述条件下,对于△ABC内一点P,$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值是-$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在区间(0,$\frac{π}{2}$)上的函数y=3tanx分别与y=2cosx和y=6sinx的图象交于点A,B,则线段AB在x轴上的射影长为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}+1(x>1)}\\{2x-3(x≤1)}\end{array}\right.$,设计一个求函数值的算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一缉私艇在岛B南50°东相距8($\sqrt{6}-\sqrt{2}$)n mile的A处,发现一走私船正由岛B沿方位角为10°方向以8$\sqrt{2}$n mile/h的速度航行,若缉私艇要在2小时时候追上走私船,求其航速和航向.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的极坐标方程为ρ2=$\frac{12}{4co{s}^{2}θ+12si{n}^{2}θ}$,直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R).
(Ⅰ)求直线l和曲线c的普通方程;
(Ⅱ)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

同步练习册答案