精英家教网 > 高中数学 > 题目详情

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

【答案】(1)①见解析;②模型乙的拟合效果更好;(2)应该增加到投放1万辆.

【解析】试题分析(1)通过对回归方程的计算可得两种模型的估计值,代入,即可得残差;计算可得可知模型乙拟合效果更好;(2)分别计算投放千辆和一万辆时该公司一天获得的总利润,即可得结论。

(1)①经计算,可得下表:

,故模型乙的拟合效果更好.

(2)若投放量为8千辆,则公司获得每辆车一天的收入期望为

所以一天的总利润为(元)

若投放量为1万辆,由(1)可知,每辆车的成本为(元),

每辆车一天收入期望为

所以一天的总利润为(元)

所以投放1万辆能获得更多利润,应该增加到投放1万辆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)在犯错误的概率不超过0.10的前提下,认为休闲方式与性别是否有关?
参考数据:独立性检验临界值表

p(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2= ,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中0<a<1,
(1)证明:f(x)是(a,+∞)上的减函数;
(2)解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为 ;如果他买进该产品的单价为n元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2 , 则他对这两种交易的综合满意度为 .现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为mAm元和mB元,甲买进A与卖出B的综合满意度为h , 乙卖出A与买进B的综合满意度为h
(1)求h和h关于mA、mB的表达式;当mA= mB时,求证:h=h
(2)设mA= mB , 当mA、mB分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:32=52﹣42 , 52=132﹣122 , 72=252﹣242 , 92=412﹣402 , …照此规律,第n个等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足 ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)要使工厂有盈利,求产量x的范围;
(3)工厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[﹣2,2]上的偶函数g(x),当x≥0时,g(x)单调递减,若g(1﹣m)﹣g(m)<0,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,求的值;

(Ⅱ)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),则 + + + =

查看答案和解析>>

同步练习册答案