精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,其中0<a<1,
(1)证明:f(x)是(a,+∞)上的减函数;
(2)解不等式f(x)>1.

【答案】
(1)证明:由1﹣ >0,得x>a,所以函数f(x)的定义域为(a,+∞).

设a<x1<x2

则f(x1)﹣f(x2)=

因为 = <0,所以1﹣ <1﹣

又0<a<1,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),

所以f(x)是(a,+∞)上的减函数


(2)f(x)>1,即 >1,也即即 >logaa,

又0<a<1,所以0<1﹣ <a,解得a<x<

所以不等式的解集为:(a,


【解析】(1)利用减函数的定义即可证明;(2)化成同底的对数式,利用对数函数的单调性可得真数的大小关系,解出即可.
【考点精析】通过灵活运用函数单调性的判断方法和对数函数的单调性与特殊点,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛另一个人当裁判,设每周比赛结束时,负的一方在下一局当裁判,假设每局比赛中甲胜乙的概率为,甲胜丙,乙胜丙的概率都是,各局的比赛相互独立,第一局甲当裁判.

(1)求第三局甲当裁判的概率;

(2)记前四次中乙当裁判的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+
(1)求证:f(x)是偶函数;
(2)判断函数f(x)在(0, )和( ,+∞)上的单调性并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= 为奇函数,a为常数.
(1)求a的值;并判断f(x)在区间(1,+∞)上的单调性;
(2)若对于区间(3,4)上的每一个x的值,不等式f(x)> 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足).

(1)求证:数列是等比数列;

(2)若满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中, ,外接球的球心为,点是侧棱上的一个动点.有下列判断:

① 直线与直线是异面直线;② 一定不垂直

③ 三棱锥的体积为定值; ④的最小值为.

其中正确的个数是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)= 的定义域为A,m>0,函数g(x)=4 x1(0<x≤m)的值域为B.
(1)当m=1时,求 (R A)∩B;
(2)是否存在实数m,使得A=B?若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

同步练习册答案