【题目】设函数 ,其中0<a<1,
(1)证明:f(x)是(a,+∞)上的减函数;
(2)解不等式f(x)>1.
【答案】
(1)证明:由1﹣ >0,得x>a,所以函数f(x)的定义域为(a,+∞).
设a<x1<x2,
则f(x1)﹣f(x2)= ﹣ ,
因为 = <0,所以1﹣ <1﹣ ,
又0<a<1,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),
所以f(x)是(a,+∞)上的减函数
(2)f(x)>1,即 >1,也即即 >logaa,
又0<a<1,所以0<1﹣ <a,解得a<x< .
所以不等式的解集为:(a, )
【解析】(1)利用减函数的定义即可证明;(2)化成同底的对数式,利用对数函数的单调性可得真数的大小关系,解出即可.
【考点精析】通过灵活运用函数单调性的判断方法和对数函数的单调性与特殊点,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数即可以解答此题.
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛另一个人当裁判,设每周比赛结束时,负的一方在下一局当裁判,假设每局比赛中甲胜乙的概率为,甲胜丙,乙胜丙的概率都是,各局的比赛相互独立,第一局甲当裁判.
(1)求第三局甲当裁判的概率;
(2)记前四次中乙当裁判的次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)= 为奇函数,a为常数.
(1)求a的值;并判断f(x)在区间(1,+∞)上的单调性;
(2)若对于区间(3,4)上的每一个x的值,不等式f(x)> 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中, , , 分别为棱的中点.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明.
(2)若侧面侧面,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中, , , ,外接球的球心为,点是侧棱上的一个动点.有下列判断:
① 直线与直线是异面直线;② 一定不垂直;
③ 三棱锥的体积为定值; ④的最小值为.
其中正确的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));
租用单车数量 (千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)= 的定义域为A,m>0,函数g(x)=4 x﹣1(0<x≤m)的值域为B.
(1)当m=1时,求 (R A)∩B;
(2)是否存在实数m,使得A=B?若存在,求出m的值; 若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com