.(本题14分) 设直线(其中,为整数)与椭圆交于不同两点,,与双曲线交于不同两点,,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
科目:高中数学 来源: 题型:
(本题14分)设函数, 当P(x,y)是函数y=f(x)图像上的点时,点是函数y=g(x)图象上的点。①写出函数y=g(x)的解析式;②若当时,恒有试确定a的取值范围。
查看答案和解析>>
科目:高中数学 来源:2015届广东始兴风度中学高一上期末考试数学试卷(解析版) 题型:解答题
(本题14分)设函数的定义域为,
(Ⅰ)若,求的取值范围;
(Ⅱ)求的最大值与最小值,并求出最值时对应的的值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省福州外国语学校高三上学期期中考试理科数学试卷(解析版) 题型:解答题
(本题14分)
设函数.
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三第一次月考文科数学试卷(解析版) 题型:解答题
(本题14分)设数列是首项为,公差为的等差数列,其前项和为,且成等差数列.
(Ⅰ)求数列的通项公式; (Ⅱ)记的前项和为,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com