精英家教网 > 高中数学 > 题目详情
某学科竞赛的预赛考试分为一试和加试两部分测试,且规定只有一试考试达标着才可以进入加试考试,一试考试和
加试考试都达标才算优胜者,从而进入决赛,一试试卷包括三个独立的必做题目,加试包括两个独立的必做题目,若一试考试至少答对两个问题就认定为达标,加试需两个题目都答对才算达标,假设甲同学一试考试中答对每个题的概率均为
2
3
,加试考试中答对每个题的概率都为
1
2
,且各题答题情况均互不影响.
(1)求甲同学成为优胜者,顺利进入决赛的概率; 
(2)设甲同学解答的题目的个数为X,求X的分布列和期望.
考点:离散型随机变量的期望与方差,互斥事件的概率加法公式,相互独立事件的概率乘法公式,离散型随机变量及其分布列
专题:概率与统计
分析:(1)甲同学成为优胜者,说明甲同学一试和加试均达标,由此能求出甲同学成为优胜者,顺利进入决赛的概率.
(2)X的可能取值为3,5,分别求出相应的概率,由此能求出X的分布列和期望.
解答: 解:(1)甲同学成为优胜者,说明甲同学一试和加试均达标,
则其概率为:
p1=[(
2
3
3+
C
2
3
(
2
3
)2×
1
3
1
2
×
1
2
=
5
27

(2)X的可能取值为3,5,
P(X=3)=(
1
3
)3+
C
2
3
(
1
3
)2×
2
3
=
7
27

P(X=5)=(
2
3
3+C
 
2
3
(
2
3
)2×
1
3
=
20
27

∴X的分布列为:
 X 3 5
 P 
7
27
 
20
27
EX=
7
27
+5×
20
27
=
121
27
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,PQ中点为M(x0,y0),且y0≥x0+2,则
y0
x0
的取值范围为(  )
A、(-
1
2
,+∞)
B、[-
1
2
,-
1
5
]
C、(-
1
2
,-
1
5
]
D、(-∞,-
1
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查喜爱运动是否和性别有关,我们随机抽取了50名对象进行了问卷调查得到了如下的2×2列联表:
喜爱运动不喜爱运动合计
男性
 
5
 
女性10
 
 
合计
 
 
50
若在全部50人中随机抽取2人,抽到喜爱运动和不喜爱运动的男性各一人的概率为
4
49

(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜爱运动与性别有关?说明你的理由.
附:
P(K2≥k)0.050.010.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组,现要从中抽取10名学生,各组内抽取的编号依次增加10进行系统抽样.
(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,求这样本的方差;
(3)在(2)的条件下,从这10名学生中随机抽取两名,记ξ为成绩大于75分的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)同时满足:①f(1)=3;②f(x)≥2恒成立;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
(1)求f(x)的最大值和最小值;
(2)试比较f(
1
2n
)与
1
2n
+2的大小(n∈N);
(3)若对任意x∈(0,1],总存在n(n∈N),使得
1
2n+1
<x≤
1
2n
,求证:对任意x∈(0,1],都有f(x)≤2x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项为和Sn,点(n,
Sn
n
)在直线y=
1
2
x+
11
2
上.数列{bn}满足bn+2-2bn+1+bn=0
(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
3
(2an-11)(2bn-1)
,数列{cn}的前n项和为Tn,求使不等式Tn
k
57
对一切n∈N*都成立的最大正整数k的值;
(3)设n∈N*,f(n)=
an,n为奇数
bn,n为偶数
,问是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是
1
2
.同样也假定D受A、B和C感染的概率都是
1
3
.在这种假定之下,B、C、D中直接受A感染的人数x就是一个随机变量.写出x的分布列(不要求写出计算过程),并求x的均值(即数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(Ⅰ) 求异面直线B1C1与AC所成角的大小;
(Ⅱ) 若该直三棱柱ABC-A1B1C1的体积为
2
2
,求点A到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了宣传“低碳生活”,来自五个不同生活小区的5名志愿者利用周末休息时间到这五个小区进行演讲.每个志愿者随机地选择去一个生活小区,且每个生活小区只去一个人.
(1)求甲恰好去自己生活小区宣传的概率;
(2)求甲、乙都没有去自己生活小区宣传的概率;
(3)记五人中恰好去自己生活小区宣传的人数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

同步练习册答案