精英家教网 > 高中数学 > 题目详情
14.已知{an}满足a1=1,an+an+1=($\frac{1}{3}$)n(n∈N*),Sn=a1+a2•3+a3•32+…+an•3n-1,类比课本中推导等比数列前n项和公式的方法,可求得4Sn-an•3n=n.

分析 在式子两边同乘3,再与原式相加得出4Sn,根据条件an+an+1=($\frac{1}{3}$)n即可得出结论.

解答 解:∵Sn=a1+a2•3+a3•32+…+an•3n-1
∴3Sn=3a1+32a2+33a3+…+3nan
两式相加得4Sn=a1+3(a1+a2)+32(a2+a3)+…3n-1(an-1+an)+3nan
∴4Sn-an•3n=a1+3(a1+a2)+32(a2+a3)+…3n-1(an-1+an
=1+3$•\frac{1}{3}$+32•$\frac{1}{{3}^{2}}$+…+3n-1•$\frac{1}{{3}^{n}}$=1+1+1+…+1=n.
故答案为:n.

点评 本题考查了错位相减法的类比应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,g(x)=f(x-1)+1,an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),n∈N*
(1)求函数{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}a_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$垂直,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.0B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=3sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,则f(x)的图象(  )
A.关于直线$x=\frac{π}{4}$对称B.关于点$(\frac{π}{4},0)$对称
C.关于直线$x=\frac{π}{12}$对称D.关于点$(\frac{π}{12},0)$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数在[-$\frac{π}{8}$,$\frac{π}{16}$]的值域为(  )
A.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]B.[-1,$\frac{\sqrt{3}}{2}$]C.[-$\frac{1}{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={-3,-2,-1,0,1,2},N={x∈R|(x-1)(x+2)>0},则M∩N=(  )
A.{-3,2}B.{-1,0,1}C.{-3,-2,-1,0,1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{1}{2-x}$的图象与函数y=2sinπx(-2≤x≤6)的图象所有交点的横坐标之和等于(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$,(m为常数),若对于任意实数a,b,c,总有f(a)+f(b)>f(c)恒成立,则实数m的取值范围为[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)为二次函数,f(0)=2,且满足f(x+1)-f(x)=2x-1.
(1)求f(x)的表达式;
(2)当x∈[-2,2]时,求函数的值域;
(3)当∈[t,t+1]时,求f(x)的最小值.

查看答案和解析>>

同步练习册答案