精英家教网 > 高中数学 > 题目详情
4.函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,g(x)=f(x-1)+1,an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),n∈N*
(1)求函数{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}a_{n+1}}$,求数列{bn}的前n项和Sn

分析 (1)由f(-x)+f(x)=0可得g(x)+g(2-x)=2,使用倒序相加法求出an
(2)求出bn,利用裂项法求和.

解答 解:(1)∵f(-x)+f(x)=$\frac{{e}^{-x}-1}{{e}^{-x}+1}$+$\frac{{e}^{x}-1}{{e}^{x}+1}$=$\frac{1-{e}^{x}}{1+{e}^{x}}$+$\frac{{e}^{x}-1}{{e}^{x}+1}$=0,
∴g(x)+g(2-x)=f(x-1)+1+f(1-x)+1=2,
∵an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),
∴an=g($\frac{2n-1}{n}$)+g($\frac{2n-2}{n}$)+g($\frac{2n-3}{n}$)+…+g($\frac{1}{n}$),
两式相加得2an=2(2n-1),
∴an=2n-1.
(2)bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}-$$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.

点评 本题考查了函数的性质,数列通项公式的求法和裂项法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.用0,1,2,3,4,5这六个数字,能组成多少个无重复数字的四位偶数?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.己知双曲线:$\frac{x^2}{a}$-$\frac{y^2}{b}$=1(a>0,b>0)的一条渐进线为2x+y=0,一个焦点为($\sqrt{5}$,0),则a=1,b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,边AB的垂直平分线交边AC于D,若C=$\frac{π}{3}$,BC=8,BD=7,则△ABC的面积为20$\sqrt{3}$,或24$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}|{{{log}_3}x}|,0<x<3\\ sin({\frac{π}{6}x}),3≤x≤15\end{array}$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{{{x_3}+{x_4}}}{{{x_1}{x_2}}}$的值等于(  )
A.18πB.18C.D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC 中,点D在直线AC上,且$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,点E在直线BD上,且$\overrightarrow{BD}$=2$\overrightarrow{DE}$,若$\overrightarrow{AE}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{AC}$,则λ12=(  )
A.0B.$\frac{1}{2}$C.$\frac{7}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B为中心在原点,焦点在x上的双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的渐近线方程为(  )
A.2x±y=0B.$\sqrt{3}x±y=0$C.x±y=0D.$\sqrt{2}x±y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=eln|x|+$\frac{1}{x}$的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}满足a1=1,an+an+1=($\frac{1}{3}$)n(n∈N*),Sn=a1+a2•3+a3•32+…+an•3n-1,类比课本中推导等比数列前n项和公式的方法,可求得4Sn-an•3n=n.

查看答案和解析>>

同步练习册答案