ijÒôÀÖÅçȪÅçÉäµÄË®Öé³ÊÅ×ÎïÏßÐΣ¬ËüÔÚÿ·ÖÖÓÄÚËæÊ±¼ät£¨Ã룩µÄ±ä»¯¹æÂÉ´óÖ¿ÉÓÃy=-£¨1+4sin2
t¦Ð
60
£©x2+20£¨sin
t¦Ð
60
£©x£¨tΪʱ¼ä²ÎÊý£¬xµÄµ¥Î»£ºm£©À´ÃèÊö£¬ÆäÖеØÃæ¿É×÷ΪxÖáËùÔÚÆ½Ã棬ȪÑÛÎª×ø±êÔ­µã£¬´¹Ö±ÓÚµØÃæµÄÖ±ÏßΪyÖᣮ
£¨1£©ÊÔÇó´ËÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµ£»
£¨2£©ÈôÔÚÒ»½¨ÖþÎïǰ¼Æ»®ÐÞ½¨Ò»¸ö¾ØÐλ¨Ì³²¢ÔÚ»¨Ì³ÄÚ×°ÖÃÁ½¸öÕâÑùµÄÅçȪ£¬ÔòÈçºÎÉè¼Æ»¨Ì³µÄ³ß´çºÍÁ½¸öÅçË®Æ÷µÄλÖ㬲ÅÄÜʹ»¨Ì³µÄÃæ»ý×î´óÇÒÄÜÈ«²¿Å絽ˮ£¿
¿¼µã£ºÒÑÖªÈý½Çº¯ÊýÄ£Ð͵ÄÓ¦ÓÃÎÊÌâ,Ô²·½³ÌµÄ×ÛºÏÓ¦ÓÃ
רÌ⣺ӦÓÃÌâ,Èý½Çº¯ÊýµÄÇóÖµ
·ÖÎö£º£¨1£©Áîy=0£¬¿É½áºÏt¡Ê£¨0£¬60£©£¬¼´¿ÉÇó³öÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµ£»
£¨2£©»¨Ì³µÄ³¤¡¢¿í·Ö±ðΪxm£¬ym£¬¸ù¾ÝÒªÇ󣬾ØÐλ¨Ì³Ó¦ÔÚÅçË®ÇøÓòÄÚ£¬¶¥µãӦǡºÃλÓÚÅçË®ÇøÓòµÄ±ß½ç£¬ÎÊÌâת»¯ÎªÔÚx£¾0£¬y£¾0£¬
x2
4
+y2=100
µÄÌõ¼þÏ£¬ÇóS=xyµÄ×î´óÖµ£®
½â´ð£º ½â£º£¨1£©µ±y=0ʱ£¬x=
20sin
t¦Ð
60
1+4sin2
t¦Ð
60
=
20
sin-1
t¦Ð
60
+4sin
t¦Ð
60
£¬¡­£¨3·Ö£©
Òòt¡Ê£¨0£¬60£©Ê±£¬sin
t¦Ð
60
¡Ê(0£¬1)
£¬¹Êsin-1
t¦Ð
60
+4sin
t¦Ð
60
¡Ý4
£¬
´Ó¶øµ±sin
t¦Ð
60
=
1
2
£¬¼´µ±t=10»ò50ʱ£¬xÓÐ×î´óÖµ5£¬
ËùÒÔ´ËÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµÊÇ5m£»¡­£¨7·Ö£©
£¨2£©É軨̳µÄ³¤¡¢¿í·Ö±ðΪxm£¬ym£¬¸ù¾ÝÒªÇ󣬾ØÐλ¨Ì³Ó¦ÔÚÅçË®ÇøÓòÄÚ£¬¶¥µãӦǡºÃλÓÚÅçË®ÇøÓòµÄ±ß½ç£¬ÒÀÌâÒâµÃ£º(
x
4
)2+(
y
2
)2=25
£¬£¨x£¾0£¬y£¾0£©
ÎÊÌâת»¯ÎªÔÚx£¾0£¬y£¾0£¬
x2
4
+y2=100
µÄÌõ¼þÏ£¬ÇóS=xyµÄ×î´óÖµ£®¡­£¨10·Ö£©
¡ßS=xy=2•
x
2
•y
¡Ü
x2
4
+y2=100
£¬
ÓÉ
x
2
=y
ºÍ
x2
4
+y2=100
¼°x£¾0£¬y£¾0µÃ£ºx=10
2
£¬y=5
2
£¬
¡àSmax=100                      ¡­£¨13·Ö£©
´ð£º»¨Ì³µÄ³¤Îª10
2
m£¬¿íΪ5
2
m£¬Á½ÅçË®Æ÷λÓÚ¾ØÐηֳɵÄÁ½¸öÕý·½ÐεÄÖÐÐÄ£¬·ûºÏÒªÇó£®    ¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÈý½Çº¯ÊýÄ£Ð͵ÄÔËÓ㬿¼²é»ù±¾²»µÈʽ£¬¿¼²éѧÉúÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈëµÄxµÄֵΪ3£¬ÔòÊä³öµÄyµÄֵΪ£¨¡¡¡¡£©
A¡¢4B¡¢5C¡¢8D¡¢10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«º¯Êýy=sin£¨2x-¦È£©µÄͼÏóFÏòÓÒÆ½ÒÆ
¦Ð
6
¸öµ¥Î»³¤¶ÈµÃµ½Í¼ÏóF¡ä£¬ÈôF¡äµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ£¨
3
8
¦Ð£¬0£©£¬Ôò¦ÈµÄÒ»¸ö¿ÉÄÜȡֵÊÇ£¨¡¡¡¡£©
A¡¢-
11
12
¦Ð
B¡¢
11
12
¦Ð
C¡¢-
5
12
¦Ð
D¡¢
5
12
¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬b=4£¬A=
¦Ð
3
£¬Ãæ»ýS=2
3

£¨1£©ÇóBC±ßµÄ³¤¶È£»
£¨2£©ÇóÖµ£º
sin2(
A
4
+
¦Ð
4
)+cos2B
cot
C
2
+tan
C
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÏòÁ¿
a
=£¨cos¦Á£¬sin¦Á£©£¬
b
=£¨cos¦Â£¬sin¦Â£©£¬ÆäÖÐ0£¼¦Â£¼¦Á£¼¦Ð£®
£¨1£©Èô
a
¡Í
b
£¬Çó
a
+
3
b
 |
掙术
£¨2£©ÉèÏòÁ¿
c
=(0£¬
3
)
£¬ÇÒ
a
+
b
=
c
£¬Çó¦Á£¬¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa¡ÊR£¬º¯Êýf(x)=lnx+
1
x
+ax
£®
£¨¢ñ£©µ±a=0ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨¢ò£©Èôf£¨x£©ÔÚÇø¼ä[2£¬+¡Þ£©ÉÏÊǵ¥µ÷º¯Êý£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
2x-1£¬0¡Üx£¼1
2f(x-1)£¬x¡Ý1
£¬·½³Ìf£¨x£©=
1
2
µÄ½â´ÓСµ½´ó×é³ÉÊýÁÐ{an}£®
£¨¢ñ£©Çóa1¡¢a2£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²EµÄ·½³ÌΪ
x2
tan¦Á
+
y2
tan2+1
=1£¬ÆäÖЦÁ¡Ê£¨0£¬
¦Ð
2
£©£®
£¨¢ñ£©ÇóÍÖÔ²EÐÎ×´×îԲʱµÄ·½³Ì£»
£¨¢ò£©ÈôÍÖÔ²E×îԲʱÈÎÒâÁ½Ìõ»¥Ïà´¹Ö±µÄÇÐÏßÏཻÓÚµãP£¬Ö¤Ã÷£ºµãPÔÚÒ»¸ö¶¨Ô²ÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÔ²E£º£¨x+
3
£©2+y2=16£¬µãF£¨
3
£¬0£©£¬PÊÇÔ²EÉÏÈÎÒâÒ»µã£®Ïß¶ÎPFµÄ´¹Ö±Æ½·ÖÏߺͰ뾶PEÏཻÓÚQ£®
£¨¢ñ£©Ç󶯵ãQµÄ¹ì¼£¦£µÄ·½³Ì£»
£¨¢ò£©ÒÑÖªA£¬B£¬CÊǹ켣¦£µÄÈý¸ö¶¯µã£¬AÓëB¹ØÓÚÔ­µã¶Ô³Æ£¬ÇÒ|CA|=|CB|£¬ÎÊ¡÷ABCµÄÃæ»ýÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬Çó³ö´ËʱµãCµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸