精英家教网 > 高中数学 > 题目详情
如图,棱长为1的正方体ABCD-A1B1C1D1中,
(Ⅰ)求证:AC⊥平面BDD1B1
(Ⅱ)求AB1与平面BDD1B1所成角的余弦值.
分析:(Ⅰ)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1
(Ⅱ)利用AC⊥平面BDD1B1,可得∠AB1O为直线AB1与平面BDD1B1所成的角,通过解三角形可得结论;
解答:解:(Ⅰ)证明:∵DD1⊥面AC,AC?平面AC,∴DD1⊥AC,
∵AC⊥BD,DD1∩BD=D,BD?平面BDD1B1,DD1?平面BDD1B1
∴AC⊥平面BDD1B1
(Ⅱ)连结AC,BD交于O,
∵AO⊥平面BDD1B1,连结OB1,A在平面BDD1B1上的射影为为O,
∴∠AB1O为直线AB1与平面BDD1B1所成的角,
OB1=
OB2+BB12
=
12+(
2
2
)2
 
=
6
2
,AB1=
2

在Rt△AB1O中,cos∠AB1O=
OB1
AB1
=
6
2
2
=
3
2

∴AB1与平面BDD1B1所成角的余弦值为
3
2
点评:本题考查直线与平面垂直的证明.解题时要认真审题,仔细解答,注意合理地进行等价转化,解题的关键是正确作出空间角
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两个相同的正四棱锥组成如图所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有
 
个.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(  )

 

A.1个                   B.2个                   C.3个                   D.无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:

两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有

(A)1个     (B)2个       (C)3个     (D)无穷多个

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省高二第二阶段考试理科数学 题型:选择题

如图2,两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(    )

A.1个         B.2个         C. 3个        D.无穷多个

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三上学期数学单元测试8-理科-立体几何初步、空间向量与立体几何 题型:填空题

 两个相同的正四棱锥组成如图所示的几何体,可放入棱长为

    1的正方体内,使正四棱锥的底面ABCD与正方体的某一个

平面平行,且各顶点均在正方体的面上,则这样的

几何体体积的可能值有               个.

 

查看答案和解析>>

同步练习册答案