精英家教网 > 高中数学 > 题目详情
7.已知椭圆4x2+y2=1及l:y=x+m.
(1)当m为何值时,直线l与椭圆有公共点?
(2)若直线l被椭圆截得的弦长为$\frac{{4\sqrt{2}}}{5}$,求直线l方程.

分析 (1)把直线y=x+m代入4x2+y2=1得5x2+2mx+m2-1=0,利用△≥0,即可得出.
(2)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,利用根与系数的关系可得弦长,就看得出.

解答 解:(1)把直线y=x+m代入4x2+y2=1得5x2+2mx+m2-1=0,①
∴△=4m2-20(m2-1)=-16m2+20≥0,$-\frac{{\sqrt{5}}}{2}≤m≤\frac{{\sqrt{5}}}{2}$.
(2)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,
由①得$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{2m}{5}\\{x_1}{x_2}=\frac{{{m^2}-1}}{5}\end{array}\right.$,
∴${({x_1}+{x_2})^2}-4{x_1}{x_2}={(-\frac{2m}{5})^2}-\frac{{4({m^2}-1)}}{5}=\frac{{-16{m^2}+20}}{25}$,
∴$|AB|=\sqrt{{{(1+k)}^2}[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}]}=\sqrt{2×\frac{{-16{m^2}+20}}{25}}=\frac{{4\sqrt{2}}}{5}$,
解得$m=±\frac{1}{2}$.
∴所求直线方程为$y=x±\frac{1}{2}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.焦点是(0,±2),且与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1有相同渐近线的双曲线的方程是(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{3}$=1C.x2-y2=2D.y2-x2=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“a=b”是“2a=2b”的充要条件.(从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中选择适当的一种填空)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1上一点M的横坐标为4,则点M到左焦点的距离是$\frac{29}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4x+a•2x+3,a∈R
(1)当a=-4时,且x∈[0,2],求函数f(x)的值域;
(2)若f(x)>0在(0,+∞)对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列判断正确的是(  )
A.若l⊥m,m⊥n,则l∥nB.若α⊥β,β⊥γ,则α∥γC.若m⊥α,α⊥β,则m∥βD.若m⊥α,m∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线x2=2py(p>0)的准线经过点(-1,-1),则抛物线的焦点坐标为(  )
A.(0,1)B.(0,2)C.(1,0)D.(2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos(2x-$\frac{π}{3}$)-cos2x.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

同步练习册答案