精英家教网 > 高中数学 > 题目详情
若函数f(x)=
x+2,x≤-1
x2,-1<x<2
2x,x≥2
,则f(f(-1))等于(  )
A、2B、1C、3D、4
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数求出f(-1)的值,然后求出f(f(-1))的值.
解答: 解:函数f(x)=
x+2,x≤-1
x2,-1<x<2
2x,x≥2
,则f(-1)=-1+2=1,
所以f(f(-1))=1.
故选:B.
点评:本题考查分段函数的值的求法,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果向量
a
=(1,0,1),
b
=(0,1,1)分别平行于平面α,β,且都与这两个平面的交线l垂直,则二面角?α-l-β的大小可能是(  )
A、90°B、30°
C、45°D、60°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4,5,6},A={1,2,4},B={2,3,5},则(∁UA)∩B是(  )
A、{2,3}
B、{3,5}
C、{1,2,3,4}
D、{2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx-
π
6
)(ω>0)和g(x)=3cos(2x+φ)(|φ|<π)的图象的对称中心完全相同,则φ的值为(  )
A、
π
3
B、-
3
C、
π
3
或-
3
D、-
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2+2x的单调递减区间为(  )
A、(-1,2)
B、(1,2)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角α的终边上一点P(1+cos40°,sin40°),则锐角α=(  )
A、80°B、70°
C、20°D、10°

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题:
①已知P(m,4)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一点,F1、F2是左、右两个焦点,若△PF1F2的内切圆的半径为
3
2
,则此椭圆的离心率e=
4
5

②过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F作斜率为
3
的直线交C于A,B两点,若
AF
=4
FB
,则该双曲线的离心率e=
6
5

③已知F1(-2,0)、F2(2,0),P是直线x=-1上一动点,若以F1、F2为焦点且过点P的双曲线的离心率为e,则e的取值范围是[2,+∞).
其中真命题的个数为(  )
A、3个B、2个C、1个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

如果平面外一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是(  )
A、平行B、相交
C、平行或相交D、不可能垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+x)•ex,其中e是自然数的底数,a∈R,
(1)当a>0时,解不等式f(x)>(a-1)ex
(2)若当x∈[-1,1]时,不等式f(x)+(2ax+1)•ex≥0恒成立,求a的取值范围;
(3)当a=0时,试判断:是否存在整数k,使得方程f(x)=(x+1)•ex+x-2在[k,k+1]上有解?若存在,请写出所有可能的k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案