精英家教网 > 高中数学 > 题目详情
1.求函数f(x)=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$的最小值以及对应的x的值.

分析 换元,利用基本不等式,即可得出结论.

解答 解:设$\sqrt{{x}^{2}+1}$=t(t≥1),则y=t+$\frac{1}{t}$≥2,
当且仅当t=1,即x=0时函数f(x)=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$的最小值为2.

点评 本题考查函数的最小值,考查换元法、基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.定义在R上的奇函数f(x)和g(x),满足F(x)=af(x)+bg(x)+2,且F(x)在区间(0,+∞)上的最大值是5,求F(x)在(-∞,0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足an+1=$\frac{1}{1-{a}_{n}}$,若a1=$\frac{1}{2}$,其前n项和为Sn,则S2015=1009.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设0<θ<$\frac{π}{2}$,向量$\overrightarrow{a}$=(sin2θ,cosθ),$\overrightarrow{b}$=(1,-cosθ),若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则sin2θ+cos2θ=$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知10m=2,10n=3,计算$1{0}^{\frac{3m-2n}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义运算“★”:$\overrightarrow{a}$★$\overrightarrow{b}$=$\left\{\begin{array}{l}{\overrightarrow{a}•\overrightarrow{b}(\overrightarrow{a},\overrightarrow{b}共线)}\\{\frac{\overrightarrow{a}•\overrightarrow{b}}{cos<\overrightarrow{a},\overrightarrow{b}>}(\overrightarrow{a},\overrightarrow{b}不共线)}\end{array}\right.$其中cos<$\overrightarrow{a}$,$\overrightarrow{b}$>表示向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦,若向量$\overrightarrow{m}$=(1,3),$\overrightarrow{n}$=(x,2),试求$\overrightarrow{m}$★$\overrightarrow{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=sin($\frac{2}{3}$x+$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{3}{2}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解关于x的不等式:$\frac{{x}^{lo{g}_{a}x}}{{a}^{3}}$≥x2(a>0且a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项a1=$\frac{2}{3}$,an+1an+an+1=2an,n∈N*
(1)证明:{$\frac{{a}_{n}}{1-{a}_{n}}$}的等比数列;
(2)求数列{$\frac{n}{{a}_{n}}$}的前n项和.

查看答案和解析>>

同步练习册答案