精英家教网 > 高中数学 > 题目详情
16.已知在数列{an}中,a1=2,an+1•an=2an-an+1,求数列{an}的通项公式.

分析 通过an+1•an=2an-an+1变形、整理可得$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-1),利用a1=2即$\frac{1}{{a}_{1}}-1$=-$\frac{1}{2}$,计算即得结论.

解答 解:∵an+1•an=2an-an+1
∴$\frac{{a}_{n+1}•{a}_{n}}{{a}_{n+1}•{a}_{n}}$=$\frac{2{a}_{n}-{a}_{n+1}}{{a}_{n+1}•{a}_{n}}$,
即$\frac{2}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∴$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-1),
又∵a1=2,即$\frac{1}{{a}_{1}}-1$=-$\frac{1}{2}$,
∴$\frac{1}{{a}_{n}}$-1=-$\frac{1}{2}$•$\frac{1}{{2}^{n-1}}$=-$\frac{1}{{2}^{n}}$,
∴$\frac{1}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$=$\frac{{2}^{n}-1}{{2}^{n}}$,
∴an=$\frac{{2}^{n}}{{2}^{n}-1}$.

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设(  )
A.三个内角都不大于60°B.三个内角都大于60°
C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=(-x2+ax)ex,(x∈R,e为自然对数的底数)
(1)当a=2时,求函数f(x)的单调递增区间.
(2)函数f(x)是否为R上的单调函数,若是,求出a的取值范围;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系xoy中,曲线C1的方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ(cosθ-sinθ)+5=0.
(Ⅰ)求曲线C1的普通方程与C2的直角坐标系方程;
(Ⅱ)设P为曲线C1上的任意一点,M为C2上的任意一点,求|PM|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tanα=2,求:
(1)$\frac{2cosα+sinα}{sinα-cosα}$
(2)sin2α-3sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若${({{x^2}-\frac{1}{ax}})^9}$(a∈R)的展开式中x9的系数是-$\frac{21}{2}$,则$\int_0^a{sinxdx}$的值为(  )
A.1-cos2B.2-cos1C.cos2-1D.1+cos2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:y=-$\frac{1}{3}$ax-$\frac{1}{3}$,l2:y=-$\frac{2}{a+1}$x-$\frac{1}{a+1}$,若l1∥l2,则实数a的值是(  )
A.a=-3或a=2B.a=-3C.a=-2D.a=3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个由圆、三角形、矩形组成的组合图,现用红黄两种颜色为其涂色,每个图形只涂一色,则三个颜色不全相同的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.7,0.8,0.9,则三人至少有一人达标的概率是0.994.

查看答案和解析>>

同步练习册答案