精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x-2lnx
(Ⅰ)求函数在(1,f(1))的切线方程
(Ⅱ)求函数f(x)的极值
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线lP1P2,则称l为弦P1P2的陪伴切线.已知两点A(1,f(1)),B(e,f(e)),试求弦AB的陪伴切线l的方程.
(I)∵y=2x-2lnx,∴y′=2-2×
1
x

∴函数y=2x-2lnx在x=1处的切线斜率为0,
又∵切点坐标为(1,2)
切线方程为y=2;
(Ⅱ)f′(x)=2-
2
x
,x>0
.…(6分)
f′(x)=0,得x=1.
当x变化时,f′(x)与f(x)变化情况如下表:
 x (0,1) 1 (1,+∞)
f′(x) - 0 +
f(x) 单调递减 极小值 单调递增
∴当x=1时,f(x)取得极小值f(1)=2.    没有极大值. …(9分)
(Ⅲ)设切点Q(x0,y0),则切线l的斜率为f′(x0)=2-
2
x0
x0∈(1,e)

弦AB的斜率为kAB=
f(e)-f(1)
e-1
=
2(e-1)-2(1-0)
e-1
=2-
2
e-1
. …(10分)
由已知得,lAB,则2-
2
x0
=2-
2
e-1
,解得x0=e-1,代入函数式得y0=2(e-1)-2ln(e-1)
解出切点坐标(e-1,2(e-1)-2ln(e-1))…(12分)
再由点斜式写出方程y-2(e-1)+2ln(e-1)=
2e-4
e-1
(x-e-1),即:y=
2e-4
e-1
x+2-2ln(e-1)

所以,弦AB的伴随切线l的方程为:y=
2e-4
e-1
x+2-2ln(e-1)
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案