如图,在棱长为2的正方体ABCD -A1B1C1D1中,点O是底面ABCD的中心,点E,F分别是CC1,AD的中点,则异面直线OE与FD1所成角的余弦值为 .
科目:高中数学 来源: 题型:填空题
如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则 (写出所有正确结论的编号).
①四面体ABCD每组对棱相互垂直;
②四面体ABCD每个面的面积相等;
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;
④连接四面体ABCD每组对棱中点的线段相互垂直平分;
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则
(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH是正方形.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
下列命题中正确的是________.(填序号)
①若直线a不在α内,则a∥α;
②若直线l上有无数个点不在平面α内,则l∥α;
③若l与平面α平行,则l与α内任何一条直线都没有公共点;
④平行于同一平面的两直线可以相交.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.
其中正确的命题是________(填上所有正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
在正三棱锥P ABC中,D,E分别是AB,BC的中点,下列结论:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE,其中正确结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com