【题目】设函数.
(1)当时,试求的单调增区间;
(2)试求在上的最大值;
(3)当时,求证:对于恒成立.
【答案】(1) ;(2)详见解析; (3)详见解析.
【解析】试题分析:(1)当时, , ,当,得,所以的单调增区间为;(2), ,得,讨论, , ,利用函数在区间上的单调性可以求出函数在上的最大值;(3)当时,设函数,则问题转化为证明对于, ,利用导数研究函数在区间的单调性,从而证明成立,于是问题得证.
试题解析:(1)由,得.当时, ,令,得.所以的单调增区间为.
(2)令,得,所以当时, 时, 恒成立, 单调递增;当时, 时, 恒成立, 单调递减;当时, 时, , 单调递减; 时, , 单调递增,综上,无论为何值,当时, 最大值都为或. ,
,所以当
时, ,
当时, .
(3)令,所以,所以,令,
解得,所以当时, 单调递减;当时, 单调递增,所以当时, ,所以函数在上单调递增,所以,所以恒成立.
科目:高中数学 来源: 题型:
【题目】音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为,求的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲、乙两个容器,甲容器容量为,装满纯酒精,乙容器容量为,其中装有体积为的水(:单位: ).现将甲容器中的液体倒人乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒人甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过次操作之后,乙容器中含有纯酒精(单位: ),下列关于数列的说法正确的是( )
A. 当时,数列有最大值
B. 设,则数列为递减数列
C. 对任意的,始终有
D. 对任意的,都有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为梯形, 底面, , , , .
(1)求证:平面 平面;
(2)设为上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.
图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).
(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择课
程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.
①当时,写出的所有可能取值;
②若选择课程的同学都参加科学营活动,求元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com