精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC中,a,b,c为角A,B,C所对的边,且

(1)求cosA的值;

(2)若△ABC的面积为,并且边AB上的中线CM的长为,求b,c的长.

【答案】(1);(2)

【解析】

(1)运用向量的数量积的定义,以及正弦定理和诱导公式,化简即可得到
(2)由三角形的面积公式,以及余弦定理,解关于 的方程,即可得到.

(1)b(3b-c)cosA=即为

b(3b-c)cosA=bacosC,

即有3bcosA=ccosA+acosC,

由正弦定理可得,

3sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,

即有cosA=

(2)由cosA=,可得sinA==

则三角形的面积S=bcsinA=2, 即bc=6,

在△ACM中,CM2=b2+-2bcosA,

即为=b2+-2,即b2+=

解得b=2,c=3.或b=,c=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),对任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)时,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为(
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为

(1)求的值;

(2)若,求函数的单调区间;

(3)设函数,且在区间内为减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)= +|lnx﹣a|,x∈[1,e2].
(1)当a=3时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若f(x)≤ 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ln(x2﹣4x+3)的单调减区间为(  )

A. (2,+∞) B. (3,+∞) C. (﹣∞,2) D. (﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an是n与Sn的等差中项,bn=an+1.
(1)求证:数列{bn}是等比数列,并求出其通项bn
(2)若数列{Cn}满足Cn= 且数列{C }的前n项和为Tn , 证明Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴与短轴之和为6,椭圆上任一点到两焦点 的距离之和为4.

(1)求椭圆的标准方程;

(2)若直线 与椭圆交于 两点, 在椭圆上,且 两点关于直线对称,问:是否存在实数,使,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且 ,S20=17,则S30为(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,2AE=BD=2.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

同步练习册答案