【题目】已知椭圆的长轴与短轴之和为6,椭圆上任一点到两焦点, 的距离之和为4.
(1)求椭圆的标准方程;
(2)若直线: 与椭圆交于, 两点, , 在椭圆上,且, 两点关于直线对称,问:是否存在实数,使,若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(Ⅰ)若a=﹣1,证明:函数f(x)是(0,+∞)上的减函数;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y=0平行,求a的值;
(Ⅲ)若x>0,证明: (其中e=2.71828…是自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,a,b,c为角A,B,C所对的边,且.
(1)求cosA的值;
(2)若△ABC的面积为,并且边AB上的中线CM的长为,求b,c的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是递增的等差数列,且满足a2a4=21,a1+a5=10.
(1)求{an}的通项公式;
(2)若数列{cn}前n项和Cn=an+1,数列{bn}满足bn=2ncn(n∈N*),求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,DE是⊙O的直径,过⊙O上的点C作直线AB,交ED的延长线于点B,且OA=OB,CA=CB,连结EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年10月1日,为庆祝中华人民共和国成立68周年,来自北京大学和清华大学的6名大学生志愿者被随机平均分配到天安门广场运送矿泉水、打扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有1名北京大学志愿者的概率是.
(1)求打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率;
(2)设随机变量ξ为在维持秩序岗位服务的北京大学志愿者的人数,求ξ的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a+b+c的值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com