精英家教网 > 高中数学 > 题目详情

已知函数数学公式+2cos2x.
(1)求f(x)的最大值以及使f(x)取得最大值的x的集合;
(2)求f(x)的单调递增区间.

解:(1)f(x)=+1+cos2x=+1=+1.
∴f(x)的最大值为2.
又由=,可得
故使f(x)取得最大值时x的集合为
(2)令
可得≤x≤
∴f(x)的单调递增区间为[](k∈Z).
分析:(1)把函数f(x)利用两角差的正弦函数公式、特殊角的三角函数值及二倍角的余弦函数公式化简后,化为一个角的正弦函数,根据正弦函数的角度等于2kπ+时,正弦函数最大值为1得到f(x)的最大值,并求出此时x的范围即可得到x的集合;
(2)根据正弦函数的增区间为(2kπ-,2kπ+)列出关于x的不等式,即可求出x的范围.
点评:此题考查学生灵活运用二倍角的余弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,掌握正弦函数的单调性及单调区间,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,其中ω是使f(x)能在x=
π
3
处取得最大值时的最小正整数.(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a,b,c满足b2=ac且边b所对的角θ的取值集合为A,当x∈A时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)
,(其中ω>0)的最小正周期为π.
(Ⅰ)求ω的值,并求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-
1
2
,c=3
,△ABC的面积为6
3
,求△ABC的外接圆面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
π
2
x-
π
6
)-2cos2
π
4
x+1
,函数g(x)与函数f(x)图象关于y轴对称.
(Ⅰ)当x∈[0,2]时,求g(x)的值域及单调递减区间
(Ⅱ)若g(x0-1)=
3
3
x0∈(-
5
3
,-
2
3
)
求sinπx0值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2 x+
3
sin 2x.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别表示角A,B,C所对边的长.若a=4,c=5,f(C)=2,求sin A及b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-
3
cosx+2
,记函数f(x)的最小正周期为β,向量
a
=(2,cosα)
b
=(1,tan(α+
β
2
))
0<α<
π
4
),且
a
b
=
7
3

(Ⅰ)求f(x)在区间[
3
3
]
上的最值;
(Ⅱ)求
2cos2α-sin2(α+β)
cosα-sinα
的值.

查看答案和解析>>

同步练习册答案