精英家教网 > 高中数学 > 题目详情
4.y=|sinx|的一个单调增区间为(  )
A.(-$\frac{π}{4}$,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(π,$\frac{5π}{4}$)D.($\frac{3π}{2}$,2π)

分析 根据y=|sinx|的图象,结合所给的选项,可得y=|sinx|的一个单调增区间.

解答 解:根据y=|sinx|的图象,结合所给的选项,
可得y=|sinx|的一个单调增区间为(π,$\frac{5π}{4}$),
故选:C.

点评 本题主要考查正弦函数的图象特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.用描述法表示集合:不大于6的非负整数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数f(x)=2x2+3x-4,当x∈[t-2,t+2]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点M是△ABC的重心,$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AC}$=$\overrightarrow{{e}_{2}}$,用$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$表示$\overrightarrow{MC}$=$\frac{2}{3}\overrightarrow{{e}_{2}}$$-\frac{1}{3}$$\overrightarrow{{e}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=m-|x-1|-2|x+1|,若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是棱AA1、CC1的中点,过直线EF的平面分别与棱BB1,DD1交于M、N两点,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD1B1
②四边形MENF的周长L=f (x),x∈[0,1]是单调函数;
③四边形MENF的面积S=g(x),x∈[0,1]是单调函数;
④四棱锥C1-MENF的体积V=h(x),x∈[0,1]为常值函数.
其中真命题的编号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{(x+1)^{2}(-3≤x≤0)}\\{x(0<x≤3)}\\{\frac{9}{x}(3<x≤9)}\end{array}\right.$
(1)作出函数的简图;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线间距离的最大值和最小值分别为(  )
A.$\frac{{\sqrt{2}}}{4},\frac{1}{2}$B.$\sqrt{2},\frac{{\sqrt{2}}}{2}$C.$\sqrt{2},\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2},\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{{x}^{2}-x}{{e}^{x}}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案