精英家教网 > 高中数学 > 题目详情
8.求点A(-2,1)关于直线2x+y-1=0的对称点A′的坐标.

分析 设点A(-2,1)关于直线2x+y-1=0的对称点A′(a,b)则直线l:2x+y-1=0为线段AA′的垂直平分线,由此能求出点A(-2,1)关于直线2x+y-1=0的对称点坐标.

解答 解:设点A(-2,1)关于直线2x+y-1=0的对称点A′(a,b),
则直线l:2x+y-1=0为线段AA′的垂直平分线,
∴AA′的中点M($\frac{a-2}{2}$,$\frac{1+b}{2}$)在l上,
且kAA′•(-2)=-1,
∴$\frac{b-1}{a+2}$=$\frac{1}{2}$,
2×($\frac{a-2}{2}$)+$\frac{1+b}{2}$-1=0,
解得;a=$\frac{6}{5}$,b=$\frac{13}{5}$.
∴点A(-2,1)关于直线2x+y-1=0的对称点坐标是($\frac{6}{5}$,$\frac{13}{5}$).
故答案为:($\frac{6}{5}$,$\frac{13}{5}$).

点评 本题考查点与直线的对称点的坐标的求法,是基础题,解题时要认真审题,注意直线方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x)在R上为偶函数且在[0,+∞)上单调递增.若f(t)>f(2-t),则实数t的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.$(\frac{2}{3},2)$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知2sinθ-cosθ=1,3cosθ-2sinθ=a,记数a形成的集合为A,若x∈A,y∈A,则以点P(x,y)为顶点的平面图形可以是.
A.正方形B.五边形C.三角形D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B,C是△ABC的内角,给出下列五个等式:
①sin2(A+B)+cos2C=1;
②sin(A+B)-sinC=0;
③cos(A+B)+cosC=0;
④sin$\frac{π-A}{4}$=cos$\frac{π+A}{4}$;
⑤tan$\frac{A+B}{2}$•tan$\frac{C}{2}$=1.
其中正确的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn=2an-2n
(I)求a3、a4
(Ⅱ)证明:数列{an+1-2an}是一个等比数列;
(Ⅲ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设点P(x,y)为圆x2+y2=1上任-点.求下列两个式子的取值范围.
(1)$\frac{y-2}{x+1}$;
(2)x2+y2-2x+6y+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x3-1|+x3+ax(a∈R)
(1)解关于字母a的不等式[f(-1)]2≤f(2);
(2)a=-12,求f(x)的单调区间
(3)若a<0,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{2x-{x}^{2},x<0}\end{array}\right.$,若f(3-m2)<f(2m),则实数m的取值范围是(  )
A.(-∞,-1)B.(3,+∞)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1$的焦点为F1,F2,过F1的直线与椭圆C交于A,B两点,若△ABF2的周长是12,则椭圆C的离心率是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步练习册答案