【题目】在平面直角坐标系中,定义
为两点
,
之间的“折线距离”.则下列命题中:
①若
点在线段
上,则有![]()
②若点
,
,
是三角形的三个顶点,则有
.
③到
两点的“折线距离”相等的点的轨迹是直线
.
④若
为坐标原点,
在直线
上,则
的最小值为
.
真命题的个数为( )
A.1B.2C.3D.4
科目:高中数学 来源: 题型:
【题目】吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯水量 | 第二阶梯水量 | 第三阶梯水量 |
月用水量范围(单位:立方米) |
|
|
|
从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:
![]()
(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;
(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到
户月用水量为一阶的可能性最大,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,动点
与
、
两点连线的斜率之积为
.
(1)求点
的轨迹
的方程;
(2)已知点
是轨迹
上的动点,点
在直线
上,且满足
(其中
为坐标原点),求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学研究曲线
的性质,得到如下结论:①
的取值范围是
;②曲线
是轴对称图形;③曲线
上的点到坐标原点的距离的最小值为
. 其中正确的结论序号为( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,AC⊥BC,且,AC=BC=2,D,E分别为AB,PB中点,PD⊥平面ABC,PD=3.
![]()
(1)求直线CE与直线PA夹角的余弦值;
(2)求直线PC与平面DEC夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设事件A表示“关于
的一元二次方程
有实根”,其中
,
为实常数.
(Ⅰ)若
为区间[0,5]上的整数值随机数,
为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若
为区间[0,5]上的均匀随机数,
为区间[0,2]上的均匀随机数,求事件A发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com