精英家教网 > 高中数学 > 题目详情
(1)判断函数f(x)=x2+
1
x
在(1,+∞)上的单调性,并用定义法加以证明;
(2)若函数f(x)=x2+
a
x
在区间(1,+∞)上的单调递增,求实数a的取值范围.
(1)f(x)在(1,+∞)上的单调递增                            …(2分)
x1,x2是区间(1,+∞)上的任意两个值,且x1<x2…(3分)
则x2-x1>0,x1+x2>2,x1x2>1,
1
x1x2
<1
1
x1x2
-(x1+x2)<0
…(5分)
f(x1)-f(x2)=
x21
+
1
x1
-(
x22
+
1
x2
)

=(x1+x2)(x1-x2)+
x2-x1
x1x2

=(x2-x1)[
1
x1x2
-(x1+x2)]<0
…(7分)
∴f(x1)<f(x2)∴f(x)在(1,+∞)上的单调递增   …(8分)
(2)f/(x)=2x-
a
x2
≥0
在区间(1,+∞)上恒成立,∴a≤2x3在区间(1,+∞)上恒成立,∴a≤2.…(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体:
①函数f(x)在其定义域上是单调函数;
②在函数f(x)的定义域内存在闭区间[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2
.请解答以下问题
(1)判断函数f(x)=x+
2
x
(x∈(0,+∞))
是否属于集合M?并说明理由;
(2)判断函数g(x)=-x3是否属于集合M?并说明理由.若是,请找出满足②的闭区间[a,b];
(3)若函数h(x)=
x-1
+t∈M
,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),x∈D,若同时满足以下条件:
①函数f(x)是D上的单调函数;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域也是[a,b],
则称函数f(x)是闭函数.
(1)判断函数f(x)=2x+
4
x
,x∈[1,10];g(x)=-x3,x∈R是不是闭函数,并说明理由;
(2)若函数f(x)=
x+2
+k
,x∈[-2,+∞)是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)判断函数f(x)=x2+
1
x
在(1,+∞)上的单调性,并用定义法加以证明;
(2)若函数f(x)=x2+
a
x
在区间(1,+∞)上的单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体
①函数f(x)在其定义域上是单调函数.
②f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域为[
a
2
b
2
].
(1)判断函数f(x)=x+
2
x
(x>0)
是否属于M,说明理由.
(2)判断g(x)=-x3是否属于M,说明理由,若是,求出满足②的区间[a,b].

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>
f(x)
x

(1)判断函数F(x)=
f(x)
x
在(0,+∞)上的单调性;
(2)设x1,x2∈(0,+∞),比较f(x1)+f(x2)与f(x1+x2)的大小,并证明你的结论;
(3)设x1,x2,…xn∈(0,+∞),若n≥2,比较f(x1)+f(x2)+…+f(xn)与f(x1+x2+…+xn)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案