¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡ÊD£¬ÈôͬʱÂú×ãÒÔÏÂÌõ¼þ£º
¢Ùº¯Êýf£¨x£©ÊÇDÉϵĵ¥µ÷º¯Êý£»
¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò³Æº¯Êýf£¨x£©ÊDZպ¯Êý£®
£¨1£©ÅжϺ¯Êýf(x)=2x+
4
x
£¬x¡Ê[1£¬10]£»g£¨x£©=-x3£¬x¡ÊRÊDz»ÊDZպ¯Êý£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf(x)=
x+2
+k
£¬x¡Ê[-2£¬+¡Þ£©ÊDZպ¯Êý£¬ÇóʵÊýkµÄȡֵ·¶Î§£®
·ÖÎö£º£¨1£©ÒªÅжÏÒ»¸öº¯ÊýÊÇ·ñÊDZպ¯Êý£¬¹Ø¼üÊÇÅжϺ¯Êýf£¨x£©ÊÇ·ñÂú×ãÌõ¼þ¢Ùº¯Êýf£¨x£©ÊÇDÉϵĵ¥µ÷º¯Êý£»¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£®Ö»ÒªÓÐÒ»¸öÌõ¼þ²»Âú×㣬¼´¿ÉÅж¨º¯Êýf£¨x£©²»ÊDZպ¯Êý£®
£¨2£©Èôº¯Êýf(x)=
x+2
+k
£¬x¡Ê[-2£¬+¡Þ£©ÊDZպ¯Êý£¬ÔòÆä±ØÂú×ã¢Ùº¯Êýf£¨x£©ÊÇDÉϵĵ¥µ÷º¯Êý£»¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£®ÓÉÓÚº¯ÊýÔÚ¶¨ÒåÓòΪÔöº¯Êý£¬¹Ê¹Ø¼üÊÇÒªÕÒ³öºÏÊʵÄkÖµ£¬Ê¹Ìõ¼þ¢ÚÂú×㣬¼´£º
f£¨a£©=aÇÒf£¨b£©=b£¬Óɴ˹¹Ôì¹ØÓÚkµÄ²»µÈʽ×飬½â²»µÈʽ×é¼´¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£º£¨1£©f¡ä(x)=2-
4
x2
=
2(x2-2)
x2

Áîf'£¨x£©=0
½âµÃx=
2
(x=-
2
Éᣩ
¡ßx¡Ê[1£¬
2
)
ʱf'£¨x£©£¼0£»
x¡Ê(
2
£¬10]
ʱf'£¨x£©£¾0
¡àf£¨x£©ÔÚ[1£¬
2
)
ÉÏÊǼõº¯Êý£¬ÔÚ(
2
£¬10]
ÉÏÊÇÔöº¯Êý
¡àº¯Êýf£¨x£©²»ÊÇ[1£¬10]Éϵĵ¥µ÷º¯Êý
¡àf(x)=2x+
4
x
²»ÊDZպ¯Êý£®
¢Ú¡ßg'£¨x£©=-x2¡Ü0¡àg£¨x£©=-x3ÔÚRÉÏÊǼõº¯Êý£¬
Éèg£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò
b=-a3
a=-b3
a£¼b
£¬½âµÃ
a=-1
b=1

¡à´æÔÚÇø¼ä[-1£¬1]⊆R£¬
ʹf£¨x£©ÔÚ[-1£¬1]ÉϵÄÖµÓòÒ²ÊÇ[-1£¬1]
¡àº¯Êýg£¨x£©=-x3ÊDZպ¯Êý
£¨2£©º¯Êýf(x)=
x+2
+k
ÔÚ¶¨ÒåÓòÉÏÊÇÔöº¯Êý
É躯Êýf£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò
a=k+
a+2
b=k+
b+2
£¬
¹Êa£¬bÊÇ·½³Ìx=k+
x+2
µÄÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬
ÃüÌâµÈ¼ÛÓÚ
x2-(2k+1)x+k2-2=0
x¡Ý-2
x¡Ýk
ÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬
µ±k¡Ü-2ʱ£¬
2k+1
2
£¾-2
(2k+1)2-4(k2-2)£¾0
22-(2k+1)k+k2-2¡Ý0
£¬
½âµÃk£¾-
9
4
£¬¡àk¡Ê(-
9
4
£¬-2]
£®
µ±k£¾-2ʱ£¬
2k+1
2
£¾k
(2k+1)2-4(k2-2)£¾0
k2-(2k+1)k+k2-2¡Ý0
£¬Î޽⣮
¡àkµÄȡֵ·¶Î§ÊÇ(-
9
4
£¬-2]
µãÆÀ£ºÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ±ÈÓú¯Êýµ¥µ÷ÐԵ͍ÒåÒª·½±ã£¬µ«Ó¦×¢Òâf¡ä£¨x£©£¾0£¨»òf¡ä£¨x£©£¼0£©½öÊÇf£¨x£©ÔÚij¸öÇø¼äÉÏΪÔöº¯Êý£¨»ò¼õº¯Êý£©µÄ³ä·ÖÌõ¼þ£¬ÔÚ£¨a£¬b£©Äڿɵ¼µÄº¯Êýf£¨x£©ÔÚ£¨a£¬b£©ÉϵÝÔö£¨»òµÝ¼õ£©µÄ³äÒªÌõ¼þÓ¦ÊÇf¡ä£¨x£©¡Ý0[»òf¡ä£¨x£©¡Ü0]£¬x¡Ê£¨a£¬b£©ºã³ÉÁ¢£¬ÇÒf¡ä£¨x£©ÔÚ£¨a£¬b£©µÄÈÎÒâ×ÓÇø¼äÄÚ¶¼²»ºãµÈÓÚ0£¬Õâ¾ÍÊÇ˵£¬º¯Êýf£¨x£©ÔÚÇø¼äÉϵÄÔö¼õÐÔ²¢²»ÅųâÔÚÇø¼äÄÚ¸ö±ðµã´¦ÓÐf¡ä£¨x0£©=0£¬ÉõÖÁ¿ÉÒÔÔÚÎÞÇî¶à¸öµã´¦f¡ä£¨x0£©=0£¬Ö»ÒªÕâÑùµÄµã²»ÄܳäÂúËù¸øÇø¼äµÄÈκÎÒ»¸ö×ÓÇø¼ä£¬Òò´Ë£¬ÔÚÒÑÖªº¯Êýf£¨x£©ÊÇÔöº¯Êý£¨»ò¼õº¯Êý£©Çó²ÎÊýµÄȡֵ·¶Î§Ê±£¬Ó¦Áîf¡ä£¨x£©¡Ý0[»òf¡ä£¨x£©¡Ü0]ºã³ÉÁ¢£¬½â³ö²ÎÊýµÄȡֵ·¶Î§£¨Ò»°ã¿ÉÓò»µÈʽºã³ÉÁ¢ÀíÂÛÇó½â£©£¬È»ºó¼ìÑé²ÎÊýµÄȡֵÄÜ·ñʹf¡ä£¨x£©ºãµÈÓÚ0£¬ÈôÄܺãµÈÓÚ0£¬Ôò²ÎÊýµÄÕâ¸öÖµÓ¦ÉáÈ¥£¬Èôf¡ä£¨x£©²»ºãΪ0£¬ÔòÓÉf¡ä£¨x£©¡Ý0[»òf¡ä£¨x£©¡Ü0]ºã³ÉÁ¢½â³öµÄ²ÎÊýµÄȡֵ·¶Î§È·¶¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªy=f£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒy=f(x+
¦Ð
2
)
Ϊżº¯Êý£¬¶ÔÓÚº¯Êýy=f£¨x£©ÓÐÏÂÁм¸ÖÖÃèÊö£º
¢Ùy=f£¨x£©ÊÇÖÜÆÚº¯Êý¢Úx=¦ÐÊÇËüµÄÒ»Ìõ¶Ô³ÆÖ᣻¢Û£¨-¦Ð£¬0£©ÊÇËüͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£»
¢Üµ±x=
¦Ð
2
ʱ£¬ËüÒ»¶¨È¡×î´óÖµ£»ÆäÖÐÃèÊöÕýÈ·µÄÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢Ùº¯Êýy=f£¨x£©£¬x¡ÊRµÄͼÏóÓëÖ±Ïßx=a¿ÉÄÜÓÐÁ½¸ö²»Í¬µÄ½»µã£»
¢Úº¯Êýy=log2x2Ó뺯Êýy=2log2xÊÇÏàµÈº¯Êý£»
¢Û¶ÔÓÚÖ¸Êýº¯Êýy=2xÓëÃݺ¯Êýy=x2£¬×Ü´æÔÚx0£¬µ±x£¾x0 Ê±£¬ÓÐ2x£¾x2³ÉÁ¢£»
¢Ü¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡Ê[a£¬b]£¬ÈôÓÐf£¨a£©•f£¨b£©£¼0£¬Ôòf£¨x£©ÔÚ£¨a£¬b£©ÄÚÓÐÁãµã£®
¢ÝÒÑÖªx1ÊÇ·½³Ìx+lgx=5µÄ¸ù£¬x2ÊÇ·½³Ìx+10x=5µÄ¸ù£¬Ôòx1+x2=5£®
ÆäÖÐÕýÈ·µÄÐòºÅÊÇ
¢Û¢Ý
¢Û¢Ý
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ºÍÆ½ÇøÒ»Ä££©º¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚ[a£¬b]ÉϵÄÔöº¯Êý£¬ÆäÖÐa£¬b¡ÊR£¬ÇÒ0£¼b£¼-a£¬ÒÑÖªy=f£¨x£©ÎÞÁãµã£¬ÉèF£¨x£©=f2£¨x£©+f2£¨-x£©£¬Ôò¶ÔÓÚº¯Êýy=F£¨x£©ÓÐÈçÏÂËÄÖÖ˵·¨£º¢Ù¶¨ÒåÓòÊÇ[-b£¬b]£»¢Ú×îСֵÊÇ0£»¢ÛÊÇżº¯Êý£»¢ÜÔÚ¶¨ÒåÓòÄÚµ¥µ÷µÝÔö£®ÆäÖÐÕýÈ·µÄ˵·¨ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ£Ä£Ä⣩¶ÔÓÚº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÁ½µãA£¨a£¬f£¨a£©£©£¬B£¨b£¬f£¨b£©£©£¬ÉèµãC·Ö
AB
µÄ±ÈΪ¦Ë£¨¦Ë£¾0£©£®Èôº¯ÊýΪf£¨x£©=x2£¨x£¾0£©£¬ÔòÖ±ÏßAB±ØÔÚÇúÏßABµÄÉÏ·½£¬ÇÒÓÉͼÏóÌØÕ÷¿ÉµÃ²»µÈʽ
a2+¦Ëb2
1+¦Ë
£¾(
a+¦Ëb
1+¦Ë
)
2
£®Èôº¯ÊýΪf£¨x£©=log2010x£¬Çë·ÖÎö¸Ãº¯ÊýµÄͼÏóÌØÕ÷£¬ÉÏÊö²»µÈʽ¿ÉÒԵõ½²»µÈʽ
log2010a+log2010b
1+¦Ë
£¼log2010
a+¦Ëb
1+¦Ë
log2010a+log2010b
1+¦Ë
£¼log2010
a+¦Ëb
1+¦Ë
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚÇø¼ä[-3£¬3]Éϵĺ¯Êýy=f£¨x£©Âú×ãf£¨-x£©+f£¨x£©=0£¬¶ÔÓÚº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÁ½µã£¨x1£¬f£¨x1£©£©£¬£¨x2£¬f£¨x2£©£©¶¼ÓУ¨x1-x2£©•[f£¨x1£©-f£¨x2£©]£¼0£®ÈôʵÊýa£¬bÂú×ãf£¨a2-2a£©+f£¨2b-b2£©¡Ü0£¬Ôòµã£¨a£¬b£©ËùÔÚÇøÓòµÄÃæ»ýΪ£¨¡¡¡¡£©
A¡¢8B¡¢4C¡¢2D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸