【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与
的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与
的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
车流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散点图知
与
具有线性相关关系,求
关于的线性回归方程;
(2)(ⅰ)利用(1)所求的回归方程,预测该市车流量为8万辆时
的浓度;
(ⅱ)规定:当一天内
的浓度平均值在
内,空气质量等级为优;当一天内
的浓度平均值在
内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,曲线C1的参数方程为
(α为参数),曲线C2的参数方程为
(β为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)已知射线l1:θ=α(
<α<
),将射线l1顺时针方向旋转
得到l2:θ=α﹣
,且射线l1与曲线C1交于两点,射线l2与曲线C2交于O,Q两点,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示.
![]()
(Ⅰ)求甲班的平均分;
(Ⅱ)从甲班和乙班成绩90
100的学生中抽取两人,求至少含有甲班一名同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等比数列,
公比为
为数列{an}的前n项和.
(1)若
求
;
(2)若调换
的顺序后能构成一个等差数列,求
的所有可能值;
(3)是否存在正常数
,使得对任意正整数n,不等式
总成立?若存在,求出
的范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
①“若
, 则
互为相反数”的逆命题;
②“若两个三角形全等,则两个三角形的面积相等”的否命题;
③“若
,则
有实根”的逆否命题;
④“若
不是等边三角形,则
的三个内角相等”逆命题;
其中真命题为( ).
A. ①② B. ②③ C. ①③ D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形
,
,
.以
的中点
为原点建立如图所示的平面直角坐标系
.
![]()
(1)求以
、
为焦点,且过
、
两点的椭圆的标准方程;
(2)过点
的直线
交(1)中椭圆于
、
两点,是否存在直线
,使得弦
为直径的圆恰好过原点?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点。
![]()
(1)求直线AF与EC所成角的正弦值;
(2)求PE与平面PDB所成角的正弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com