精英家教网 > 高中数学 > 题目详情

【题目】在ABC中,内角A,B,C的对边分别为a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面积S.

【答案】
(1)解:由正弦定理设

= = =

整理求得sin(A+B)=2sin(B+C)

又A+B+C=π

∴sinC=2sinA,即 =2


(2)解:由余弦定理可知cosB= =

由(1)可知 = =2②

再由b=2,①②联立求得c=2,a=1

sinB= =

∴S= acsinB=


【解析】(1)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA的关系式,则 的值可得.(2)先通过余弦定理可求得a和c的关系式,同时利用(1)中的结论和正弦定理求得a和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》是中央电视台最近推出的一档有重大影响力的大型电视文化节目,今年两会期间,教育部部长陈宝生答记者问时就给予其高度评价.基于这样的背景,山东某中学积极响应,也举行了一次诗词竞赛.组委会在竞赛后,从中抽取了部分选手的成绩(百分制),作为样本进行统计,作出了图1的频率分布直方图和图2的茎叶图(但中间三行污损,看不清数据).

(I)求样本容量和频率分布直方图中的的值;

(II)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,写出基本事件空间并求至少有两名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数x、y满足xy=x+y+3.
(1)求xy的范围;
(2)求x+y的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论预测该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

,其中表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标系中,圆轴负半轴交于点,过点的直线,分别与圆交于,两点.

)若,,求的面积;

)若直线过点,证明:为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=1,a3=﹣3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数.

(),当时,求函数的单调区间;

()时,直线与函数的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.

查看答案和解析>>

同步练习册答案