精英家教网 > 高中数学 > 题目详情

【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.

【答案】
(1)解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,

则此圆的圆心为(0,4),半径为2.

若直线l与圆C相切,则有 .解得


(2)解:联立方程 并消去y,

得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.

设此方程的两根分别为x1、x2

所以x1+x2=﹣ ,x1x2=

则AB= = =2

两边平方并代入解得:a=﹣7或a=﹣1,

∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.


【解析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径r,(1)当直线l与圆相切时,圆心到直线的距离d等于圆的半径r,利用点到直线的距离公式表示出圆心到直线l的距离d,让d等于圆的半径r,列出关于a的方程,求出方程的解即可得到a的值;(2)联立圆C和直线l的方程,消去y后,得到关于x的一元二次方程,然后利用韦达定理表示出AB的长度,列出关于a的方程,求出方程的解即可得到a的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在ABC中,内角A,B,C的对边分别为a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然对数的底数,e=2.71828…
(1)当a=0时,解不等式f(x)<2;
(2)求函数f(x)的单调增区间;
(3)设a≥ ,讨论关于x的方程f(f(x))= 的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 轴的交点是椭圆 的一个焦点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,是否存在使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1979年,李政道博士给中国科技大学少年班出过一道智趣题:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡觉,准备第二天再分,夜里1只猴子偷偷爬起来,先吃掉一个桃子,然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,将剩余的桃子吃掉一个后,也将桃子分成5等份;藏起自己的一份睡觉去了;以后的3只猴子都先后照此办理,问:最初至少有多少个桃子?最后至少剩下多少个桃子?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下2-组随机数:

907 966 191 925 271 932 812 458

569 683 431 257 393 027 556 488

730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知.

(Ⅰ)解不等式

(Ⅱ)若关于的不等式对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx=axlnx,其中a为常数,设e为自然对数的底数.

1)当a=1时,求的最大值;

2)若fx)在区间(0e]上的最大值为-3,求a的值;

3)当a=1时,试推断方程是否有实数解 .

查看答案和解析>>

同步练习册答案