【题目】已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.
【答案】
(1)解:由图象可知,周期T=2( ﹣ )=π,∴ω= =2
∵点( ,0)在函数图象上,∴Asin(2× +φ)=0
∴sin( +φ)=0,∴ +φ=π+kπ,即φ=kπ+ ,k∈z
∵0<φ<
∴φ=
∵点(0,1)在函数图象上,∴Asin =1,A=2
∴函数f(x)的解析式为f(x)=2sin(2x+ )
(2)解:g(x)=2sin[2(x﹣ )+ ]﹣2sin[2(x+ )+ ]=2sin2x﹣2sin(2x+ )
=2sin2x﹣2( sin2x+ cos2x)=sin2x﹣ cos2x
=2sin(2x﹣ )
由﹣ +2kπ≤2x﹣ ≤ +2kπ,k∈z
得kπ﹣ ≤x≤kπ+
∴函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间为[kπ﹣ ,kπ+ ]k∈z
【解析】(1)先利用函数图象求此函数的周期,从而计算得ω的值,再将点( ,0)和(0,1)代入解析式,分别解得φ和A的值,最后写出函数解析式即可;(2)先利用三角变换公式将函数g(x)的解析式化为y=Asin(ωx+φ)型函数,再将内层函数看做整体,置于外层函数即正弦函数的单调增区间上,即可解得函数g(x)的单调增区间
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于,两点.
(Ⅰ)若,,求的面积;
(Ⅱ)若直线过点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 .
(1)求f(x)的解析式;
(2)当 ,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且、.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数的图象,给出下列命题:
①是函数的极值点
②1是函数的极小值点
③在处切线的斜率大于零
④在区间上单调递减
则正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数y=sin(2x+ )的图象向右平移 个单位,再把所得图象上各点的横坐标缩短到原来的 ,则所得图象的函数解析式是( )
A.y=sin(4x+ π)
B.y=sin(4x+ )
C.y=sin4x
D.y=sinx
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com