精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然对数的底数,e=2.71828…
(1)当a=0时,解不等式f(x)<2;
(2)求函数f(x)的单调增区间;
(3)设a≥ ,讨论关于x的方程f(f(x))= 的解的个数.

【答案】
(1)解:当a=0时,不等式f(x)<2,即:

,因此

,所以

所以原不等式的解集为


(2)解:①当a≤0时,

因为x>0时, ,x<0时,

故f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增;…(5分)

②当0<a<1时,

仿①得f(x)在(﹣∞,lna)和(lna,0)上单调递减,在(0,+∞)上单调递增,

即f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增;(6分)

③当a=1时,

易得f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增; …(7分)

④当a>1时,

同理得f(x)在区间(﹣∞,lna)上单调递减,在区间(lna,+∞)上单调递增.…(8分)

综上所述,

当a≤1时,f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增;

当a>1时,f(x)在区间(﹣∞,lna)上单调递减,在区间(lna,+∞)上单调递增.…(10分)


(3)解:由(2)知:当 时,因为

又x→+∞时,

所以f(x)的值域为 ,且 (等号仅当 时取).)

时, ,所以 不成立,原方程无解;

时,由 ,因为 ,所以

所以 有两个不相等的实数根,故原方程有两个不同的实数解.

综上所述,当 时,原方程无解;当 时,原方程有两个不同的实数解.


【解析】(1)将a=0代入不等式,得到关于x的不等式组,解出即可;(2)通过讨论a的范围,求出f(x)的分段函数,从而求出函数的单调区间;(3)先求出函数的值域,结合换元法以及a的范围,求出方程的解即可.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=1,a3=﹣3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数.

(),当时,求函数的单调区间;

()时,直线与函数的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,四边形是菱形,,二面角 .

(Ⅰ)求证:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦点在轴上,椭圆的左顶点为,斜率为的直线交椭圆 两点,点在椭圆上, ,直线轴于点.

(Ⅰ)当点为椭圆的上顶点, 的面积为时,求椭圆的离心率;

(Ⅱ)当 时,求的取值范围.

查看答案和解析>>

同步练习册答案