精英家教网 > 高中数学 > 题目详情

已知f(x+1)=xα(α为常数),且函数y=f(x)的图象经过点(5,2).
(1)求f(x)的解析式;(2)用单调性定义证明y=f(x)在定义域内为增函数.

解:(1)∵f(x+1)=xα∴f(x)=(x-1)α
又y=f(x)的图象过点(5,2)∴f(5)=(5-1)α=2,α=log42=
(x≥1)
(2)设1≤x1<x2
则f(x1)-f(x2)==<0
∴f(x1)<f(x2)∴y=f(x)在定义域内为增函数.
分析:(1)先根据f(x+1)=xα表示出f(x),然后将点(5,2)代入,求出α,从而求出函数f(x)的解析式;
(2)设1≤x1<x2,然后通过化简变形判定f(x1)-f(x2)的符号,根据增函数的定义进行判定即可.
点评:本题主要考查了幂函数,以及函数单调性的判断与证明,解题的关键就是对f(x1)-f(x2)进行化简变形定号,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的解析式:
(1)已知f(
x
+1
)=x+2
x
,求f(x+1);
(2)设f(x)满足f(x)-2f(
1
x
)=x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x+3,求f(x)的解析式;
(2)已知f(
x
+1)=x+2
x
,求f(x);
(3)已知f(x)满足2f(x)+f(
1
x
)
=3x,求f(x).

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的解析式:
(1)已知f(
x
+1
)=x+2
x
,求f(x+1);
(2)设f(x)满足f(x)-2f(
1
x
)=x,求f(x).

查看答案和解析>>

同步练习册答案