精英家教网 > 高中数学 > 题目详情
设椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,点A(a,0),B(0,b),原点O到直线AB的距离为
2
3
3
,求椭圆M的方程.
考点:椭圆的简单性质,椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:首先利用离心率建立关于a、c的关系式,进一步利用直线的截距式和点到直线的距离建立关系式,最后求出方程.
解答: 解:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
c
a
=
2
2

点A(a,0),B(0,b)
直线AB的方程为:
x
a
+
y
b
=1

原点O到直线AB的距离为
2
3
3

则:
|ab|
a2+b2
=
2
3
3

解得:a2=4  b2=2
即:
x2
4
+
y2
2
=1

故答案为:
x2
4
+
y2
2
=1
点评:本题考查的知识要点:椭圆的离心率,直线的截距式,点到直线的距离公式,及椭圆的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中应抽学生人数是(  )
A、300B、200
C、150D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则下列结论不成立的是
 

①EF与BB1垂直;②EF与BD垂直;③EF与CD异面;④EF与A1C1异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=(2x-16)
1
2
},集合B={x|y=
2x-1
2x+1
},集合C={x|a-1<x<2a+1}.
(1)求A,(∁RA)∩B;
(2)若A∩C≠C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式1-
3
x+a
<0的解集为(-1,2),则
3
a
(1-
3
x÷a
)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
y≤1
y≥|x-1|
,则
x+2y+3
x+1
的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2,a3,a4分别是某等差数列的第5项、第3项、第2项,且a1=64,公比q≠1.
(Ⅰ)求an
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

对某电子元件进行使用寿命追踪调查,情况如下,试估计该电子元件使用寿命的平均值.
寿命(h)[100,200)[200,300)[300,400)[400,500)[500,600)
个数2030804030

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:2 log23=
 
,2 1+log23=
 

查看答案和解析>>

同步练习册答案