精英家教网 > 高中数学 > 题目详情

甲、乙两人轮流投篮直至某人投中为止,已知甲投篮每次投中的概率为0.4,乙每次投篮投中的概率为0.6,各次投篮互不影响.设甲投篮的次数为,若乙先投,且两人投篮次数之和不超过4次,求的概率分布.

的概率分布为

0

1

2

P

0.6

0.304

0.096


解析:

因为乙先投,且次数之和不超过4次,所以,甲投篮次数的随机变量可以是0,1,2三个.

由于乙先投,若乙第一次就投中,则甲就不再投,

∴P(=0)=0.6.

=1时,它包含两种情况.

第一种:甲第1次投中,这种情况的概率为

P1=0.4×0.4=0.16.

第二种:甲第1次未投中,乙第2次投中,这种情况的概率为P2=0.4×0.6×0.6=0.144,

∴P(=1)=P1+P2=0.304.

=2时,投篮终止,

∴P(=2)=0.4×0.6×0.4=0.096.

的概率分布为

0

1

2

P

0.6

0.304

0.096

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为
1
3
,乙每次投篮投中的概率为
1
2
,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.设甲每次投篮投中的概率为
1
3
,乙每次投篮投中的概率为
1
2
,且各次投篮互不影响.
(Ⅰ)求乙获胜的概率;
(Ⅱ)求投篮结束时乙只投了2个球的概率.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(重庆卷解析版) 题型:解答题

甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.[来(Ⅰ) 求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数的分布列与期望

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(重庆卷解析版) 题型:解答题

甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率。

 

查看答案和解析>>

同步练习册答案