精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,
3
2
)在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为
12
2
7
,求直线l的方程.
(1)由题意可设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
由|F1F2|=2得c=1,∴F1(-1,0),F2(1,0),
又点(1,
3
2
)在椭圆C上,∴2a=
(1+1)2+(
3
2
)2
+
(1-1)2+(
3
2
)2
=4
,a=2.则b2=a2-c2=4-1=3.
∴椭圆C的方程为
x2
4
+
y2
3
=1

(2)如图,
设直线l的方程为x=ty-1,A(x1,y1),B(x2,y2),
把x=ty-1代入
x2
4
+
y2
3
=1
,得:(3t2+4)y2-6ty-9=0
y1+y2=
6t
3t2+4
y1y2=
-9
3t2+4

|y1-y2|=
(y1+y2)2-4y1y2
=
(
6t
3t2+4
)2-4×
-9
(3t2+4)
=
12
t2+1
3t2+4

S=
1
2
|F1F2||y1-y2|=
12
t2+1
3t2+4
=
12
2
7

解得:t2=-
17
18
(舍)或t2=1,t=±1.
故所求直线方程为:x±y+1=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,抛物线准线与x轴交于C点,若∠CBF=90°,则|AF|-|BF|的值为(  )
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1,F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(I)求椭圆的标准方程;
(II)求过A(1,1)与椭圆相切的直线方程;
(III)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,且椭圆Γ的右焦点F与抛物线y2=4x的焦点重合.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)过左焦点F的直线l与椭圆交于A,B两点,是否存在直线l,使得OA⊥OB,O为坐标原点,若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线L:
x
4
+
y
3
=1与椭圆E:
x2
16
+
y2
9
=1相交于A,B两点,该椭圆上存在点P,使得△PAB的面积等于3,则这样的点P共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,长轴端点与短轴端点间的距离为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若OE⊥OF,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=x+m与曲线y=
1-2x2
有两个交点,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一坐标系中,方程
x2
a2
+
y2
b2
=1
与bx2=-ay(a>b>0)表示的曲线大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:x2+
y2
a2
=1(a>1)
的离心率为e,点F为其下焦点,点O为坐标原点,过F的直线l:y=mx-c(其中c=
a2-1
)与椭圆C相交于P,Q两点,且满足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)试用a表示m2
(Ⅱ)求e的最大值;
(Ⅲ)若e∈(
1
3
1
2
)
,求m的取值范围.

查看答案和解析>>

同步练习册答案