精英家教网 > 高中数学 > 题目详情

【题目】已知点,圆.

1)若直线过点且到圆心的距离为,求直线的方程;

2)设过点的直线与圆交于两点(的斜率为负),当时,求以线段为直径的圆的方程.

【答案】1;(2.

【解析】

1)对直线的斜率是否存在进行分类讨论,利用圆心到直线的距离等于2可求得直线的方程;

2)先通过点到直线的距离及勾股定理可解得直线的斜率,然后将直线的方程与圆的方程联立,求出线段的中点,作为圆心,并求出所求圆的半径,进而可得出所求圆的方程.

1)由题意知,圆的标准方程为圆心,半径

①当直线的斜率存在时,设直线的方程为,即

则圆心到直线的距离为.

直线的方程为

②当直线的斜率不存在时,直线的方程为

此时圆心到直线的距离为,符合题意.

综上所述,直线的方程为

2)依题意可设直线的方程为,即

则圆心到直线的距离

,解得

直线的方程为

设点,联立直线与圆的方程得

消去

则线段的中点的横坐标为,把代入直线中得

所以,线段的中点的坐标为

由题意知,所求圆的半径为:

以线段为直径的圆的方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数在点处的切线方程;

(2)对于任意的的图象恒在图象的上方,求实数a的取值菹围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MM1分别是棱ADA1D1的中点.

(1)求证:四边形BB1M1M为平行四边形;

(2)求证:∠BMC=∠B1M1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰直角三角形中,分别是上的点,的中点,将沿折起,得到如图2所示的四棱锥,其中.

(1)证明:平面

(2)求二面角的平面角的余弦值;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数茎叶图如下:

(1)求甲命中个数的中位数和乙命中个数的众数;

(2)通过计算,比较甲乙两人的罚球水平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角三角形的外接圆半径是,点分别在边上。求证:的三条高的充要条件是式中的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:①对于任意的都有成立;②当,;;则不等式的解集为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的偶函数,对任意都有,当,且时,,给出如下命题:

②直线是函数的图象的一条对称轴;

③函数上为增函数;

④函数上有四个零点.

其中所有正确命题的序号为( )

A. ①② B. ②④ C. ①②③ D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某地某年月平均气温(华氏度):

月份

1

2

3

4

5

6

7

8

9

10

11

12

平均气温

21.4

26.0

36.0

48.8

59.1

68.6

73.0

71.9

64.7

53.5

39.8

27.7

以月份为x轴(月份),以平均气温为y.

1)用正弦曲线去拟合这些数据;

2)估计这个正弦曲线的周期T和振幅A

3)下面三个函数模型中,哪一个最适合这些数据?

;②;③.

查看答案和解析>>

同步练习册答案