分析 根据导数的定义即可求出.
解答 解:(1)首先,对x=1给定自变量x的一个改变量△x,
得到相应函数值的改变量△y=f(1+△x)-f(1)=$\frac{{{{(△x)}^2}-△x}}{1+△x}$.再计算相应的平均变化率$\frac{△y}{△x}=\frac{{\frac{{{{(△x)}^2}-△x}}{1+△x}}}{△x}=1-\frac{2}{1+△x}$.当△x趋于0时,可以得出导数${f^'}(x)=\lim_{△x→0}\frac{△y}{△x}=\lim_{△x→0}(1-\frac{2}{1+△x})=-1$.
(2)首先,对x=-2给定自变量x的一个该变量△x,得到相应函数值的该变量△y=f(-2+△x)-f(-2)=$\frac{△x}{-2+△x}+△x$.再计算相应函数的平均变化率$\frac{△y}{△x}=\frac{{\frac{△x}{-2+△x}+△x}}{△x}=\frac{1}{-2+△x}+1$.当△x趋于0时,得到导数${f^'}(-2)=\lim_{△x→0}\frac{△y}{△x}=\lim_{△x→0}(\frac{1}{-2+△x}+1)=-\frac{1}{2}+1=\frac{1}{2}$.
(3)首先,对x=x0给定自变量x的一个该变量△x,得到相应函数值的改变量$△y=f({x_0}+△x)-f({x_0})=-\frac{2△x}{{{x_0}^2+{x_0}△x}}+△x$.再计算相应的平均变化率$\frac{△y}{△x}=\frac{{-\frac{2△x}{{{x_0}^2+{x_0}△x}}+△x}}{△x}=-\frac{2}{{{x_0}^2+{x_0}△x}}+1$.当△x趋于0时,可以得出导数${f^'}(x{\;}_0)=\lim_{△x→0}\frac{△y}{△x}=\lim_{△x→0}(-\frac{2}{{x{{{\;}_0}^2}+{x_0}△x}}+1)=-\frac{2}{{{x_0}^2}}+1$.
点评 本题主要考查导数的定义,以及导数的几何意义,利用导数和瞬时变化率之间的关系求导数是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{\sqrt{5}-1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,5] | B. | (-1,5] | C. | [-1,1] | D. | [1,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com