精英家教网 > 高中数学 > 题目详情

已知数列是等差数列,且
(1)求数列的通项公式; (2)令,求数列前n项和.

(1)(2)

解析试题分析:解:(1)数列{an}是等差数列,且a1=1,a1+a2+a3=12,设出公差为d,∴a1+a1+d+a1+2d=12,∴a1+d=4,可得2+d=4,解得d=2,∴an=a1+(n-1)d=1+(n-1)×2=2n+1,(2)数列{an}的通项公式为an=n•2n,设其前n项和为Sn,∴Sn=1•21+2•22+3•23+…+n•2n
2Sn=1•22+2•23+3•24+…+n•2n+1
①-②可得-Sn=21+22+23+…+2n-n•2n+1
∴-Sn=-2+22+23++…+2n -n•2n+1
∴Sn=n×2n+1-2n+1+2=(n-1)2n+1+2;

考点:等差数列,数列的求和
点评:主要是考查了等差数列的定义,以及通项公式的运用,以及错位相减法来求解数列的和,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列满足 
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为 ,对于任意的恒有    
(1) 求数列的通项公式 
(2)若证明: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知首项为的等比数列的前n项和为, 且成等差数列.
(Ⅰ) 求数列的通项公式;
(Ⅱ) 证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)设数列满足,求的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,记
),若对于任意成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ) 求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项,且
①设,求证:数列为等差数列;②设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列前n项和,且.
(Ⅰ)试求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,,用数学归纳法证明:

查看答案和解析>>

同步练习册答案